Suppr超能文献

使用动态模态分解对脑电信号进行神经解码。

Neural decoding of electrocorticographic signals using dynamic mode decomposition.

机构信息

Osaka University, Institute for Advanced Co-Creation Studies, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

J Neural Eng. 2020 Jun 2;17(3):036009. doi: 10.1088/1741-2552/ab8910.

Abstract

OBJECTIVE

Brain-computer interfaces (BCIs) using electrocorticographic (ECoG) signals have been developed to restore the communication function of severely paralyzed patients. However, the limited amount of information derived from ECoG signals hinders their clinical applications. We aimed to develop a method to decode ECoG signals using spatiotemporal patterns characterizing movement types to increase the amount of information gained from these signals.

APPROACH

Previous studies have demonstrated that motor information could be decoded using powers of specific frequency bands of the ECoG signals estimated by fast Fourier transform (FFT) or wavelet analysis. However, because FFT is evaluated for each channel, the temporal and spatial patterns among channels are difficult to evaluate. Here, we used dynamic mode decomposition (DMD) to evaluate the spatiotemporal pattern of ECoG signals and evaluated the accuracy of motor decoding with the DMD modes. We used ECoG signals during three types of hand movements, which were recorded from 11 patients implanted with subdural electrodes. From the signals at the time of the movements, the modes and powers were evaluated by DMD and FFT and were decoded using support vector machine. We used the Grassmann kernel to evaluate the distance between modes estimated by DMD (DMD mode). In addition, we decoded the DMD modes, in which the phase components were shuffled, to compare the classification accuracy.

MAIN RESULTS

The decoding accuracy using DMD modes was significantly better than that using FFT powers. The accuracy significantly decreased when the phases of the DMD mode were shuffled. Among the frequency bands, the DMD mode at approximately 100 Hz demonstrated the highest classification accuracy.

SIGNIFICANCE

DMD successfully captured the spatiotemporal patterns characterizing the movement types and contributed to improving the decoding accuracy. This method can be applied to improve BCIs to help severely paralyzed patients communicate.

摘要

目的

脑-机接口(BCI)利用脑电(ECoG)信号已经被开发出来,以恢复严重瘫痪患者的沟通功能。然而,从 ECoG 信号中获得的信息量有限,限制了它们的临床应用。我们的目的是开发一种使用运动类型特征的时空模式来解码 ECoG 信号的方法,以增加从这些信号中获得的信息量。

方法

先前的研究表明,运动信息可以使用由快速傅里叶变换(FFT)或小波分析估计的 ECoG 信号的特定频带的功率来解码。然而,由于 FFT 是针对每个通道进行评估的,因此通道之间的时间和空间模式很难评估。在这里,我们使用动态模式分解(DMD)来评估 ECoG 信号的时空模式,并使用 DMD 模式评估运动解码的准确性。我们使用了 11 名植入硬膜下电极的患者在进行三种手部运动时的 ECoG 信号。从运动时的信号中,通过 DMD 评估模式和功率,并使用支持向量机进行解码。我们使用 Grassmann 核来评估 DMD 估计的模式之间的距离(DMD 模式)。此外,我们还解码了相位分量被打乱的 DMD 模式,以比较分类精度。

主要结果

使用 DMD 模式的解码精度明显优于使用 FFT 功率的解码精度。当 DMD 模式的相位被打乱时,精度显著降低。在频带中,约 100 Hz 的 DMD 模式表现出最高的分类精度。

意义

DMD 成功地捕捉到了运动类型特征的时空模式,有助于提高解码精度。这种方法可以应用于改善 BCI,以帮助严重瘫痪的患者进行交流。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验