Suppr超能文献

应用表达谱相似性发现患者特异性功能突变。

Applying Expression Profile Similarity for Discovery of Patient-Specific Functional Mutations.

作者信息

Meng Guofeng

机构信息

BT science Inc., No. 24, Tang'an Road, Shanghai, China.

出版信息

High Throughput. 2018 Feb 22;7(1):6. doi: 10.3390/ht7010006.

Abstract

The progress of cancer genome sequencing projects yields unprecedented information of mutations for numerous patients. However, the complexity of mutation profiles of cancer patients hinders the further understanding to mechanisms of oncogenesis. One basic question is how to find mutations with functional impacts. In this work, we introduce a computational method to predict functional somatic mutations of each patient by integrating mutation recurrence with expression profile similarity. With this method, the functional mutations are determined by checking the mutation enrichment among a group of patients with similar expression profiles. We applied this method to three cancer types and identified the functional mutations. Comparison of the predictions for three cancer types suggested that most of the functional mutations were cancer-type-specific with one exception to . By checking predicted results, we found that our method effectively filtered non-functional mutations resulting from large protein sizes. In addition, this method can also perform functional annotation to each patient to describe their association with signalling pathways or biological processes. In breast cancer, we predicted "cell adhesion" and other terms to be significantly associated with oncogenesis.

摘要

癌症基因组测序项目的进展为众多患者带来了前所未有的突变信息。然而,癌症患者突变谱的复杂性阻碍了对肿瘤发生机制的进一步理解。一个基本问题是如何找到具有功能影响的突变。在这项工作中,我们引入了一种计算方法,通过整合突变复发与表达谱相似性来预测每位患者的功能性体细胞突变。使用这种方法,功能性突变通过检查一组具有相似表达谱的患者中的突变富集情况来确定。我们将此方法应用于三种癌症类型并鉴定出功能性突变。对三种癌症类型预测结果的比较表明,大多数功能性突变是癌症类型特异性的,只有一个例外。通过检查预测结果,我们发现我们的方法有效地过滤了由大蛋白质大小导致的无功能突变。此外,该方法还可以对每位患者进行功能注释,以描述他们与信号通路或生物学过程的关联。在乳腺癌中,我们预测“细胞黏附”等术语与肿瘤发生显著相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5e/5876532/b679dab7c01a/high-throughput-07-00006-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验