School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom.
Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
Plant Physiol. 2018 Apr;176(4):3120-3135. doi: 10.1104/pp.17.01611. Epub 2018 Feb 27.
The circadian system optimizes cellular responses to stress, but the signaling pathways that convey the metabolic consequences of stress into this molecular timekeeping mechanism remain unclear. Redox regulation of the SAL1 phosphatase during abiotic stress initiates a signaling pathway from chloroplast to nucleus by regulating the accumulation of a metabolite, 3'-phosphoadenosine 5'-phosphate (PAP). Consequently, PAP accumulates in response to redox stress and inhibits the activity of exoribonucleases (XRNs) in the nucleus and cytosol. We demonstrated that osmotic stress induces a lengthening of circadian period and that genetically inducing the SAL1-PAP-XRN pathway in plants lacking either SAL1 or XRNs similarly delays the circadian system. Exogenous application of PAP was also sufficient to extend circadian period. Thus, SAL1-PAP-XRN signaling likely regulates circadian rhythms in response to redox stress. Our findings exemplify how two central processes in plants, molecular timekeeping and responses to abiotic stress, can be interlinked to regulate gene expression.
生物钟系统优化了细胞对压力的反应,但将压力的代谢后果传递到这个分子计时机制的信号通路仍不清楚。在非生物胁迫期间,SAL1 磷酸酶的氧化还原调节通过调节代谢物 3'-磷酸腺苷 5'-磷酸(PAP)的积累,启动从叶绿体到细胞核的信号通路。因此,PAP 积累以响应氧化还原应激,并抑制核和细胞质中 exoribonucleases(XRNs)的活性。我们证明,渗透胁迫诱导生物钟周期延长,并且在缺乏 SAL1 或 XRNs 的植物中遗传诱导 SAL1-PAP-XRN 途径同样延迟生物钟系统。外源性 PAP 的应用也足以延长生物钟周期。因此,SAL1-PAP-XRN 信号可能调节生物钟节律以响应氧化还原应激。我们的研究结果说明了植物中两个核心过程,分子计时和对非生物胁迫的反应,如何相互关联以调节基因表达。