School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA.
Sci Rep. 2018 Feb 27;8(1):3677. doi: 10.1038/s41598-018-22023-3.
The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.
本研究旨在为肺癌放射治疗中的内部运动估计开发一种内部-外部相关模型。通过最近开发的局部拓扑保持非刚性点匹配算法,分别对 4DCT 图像中的内部器官网格和外部表面网格进行配准,得到描述内部-外部运动的变形矢量场。通过将估计的内部相位 D V F 与外部相位和方向 D V F 相结合,构建一个组合矩阵。然后,对组合矩阵进行主成分分析,以提取主要运动特征,并生成模型参数以关联内部-外部运动。在基于 NURBS 的心脏-胸部(NCAT)合成体模和 5 例肺癌患者的 4DCT 图像上对所提出的模型进行了评估。对于肿瘤跟踪,跟踪肿瘤的质心误差在合成数据中分别为 0.8(±0.5)mm/0.8(±0.4)mm,在患者数据中分别为 1.3(±1.0)mm/1.2(±1.2)mm。对于肺跟踪,在合成数据中跟踪轮廓的百分比误差分别为 0.06(±0.02)/0.07(±0.03),在患者数据中分别为 0.06(±0.02)/0.06(±0.02)。广泛的验证已经证明了该模型在肺癌放射治疗中对肿瘤和肺进行运动跟踪的有效性和可靠性。