Chen Haibin, Zhen Xin, Gu Xuejun, Yan Hao, Cervino Laura, Xiao Yang, Zhou Linghong
Department of Biomedical Engineering, Southern Medical University, Guangzhou, China,.
J Appl Clin Med Phys. 2015 Mar 8;16(2):5324. doi: 10.1120/jacmp.v16i2.5324.
In medical image processing, robust segmentation of inhomogeneous targets is a challenging problem. Because of the complexity and diversity in medical images, the commonly used semiautomatic segmentation algorithms usually fail in the segmentation of inhomogeneous objects. In this study, we propose a novel algorithm imbedded with a seed point autogeneration for random walks segmentation enhancement, namely SPARSE, for better segmentation of inhomogeneous objects. With a few user-labeled points, SPARSE is able to generate extended seed points by estimating the probability of each voxel with respect to the labels. The random walks algorithm is then applied upon the extended seed points to achieve improved segmentation result. SPARSE is implemented under the compute unified device architecture (CUDA) programming environment on graphic processing unit (GPU) hardware platform. Quantitative evaluations are performed using clinical homogeneous and inhomogeneous cases. It is found that the SPARSE can greatly decrease the sensitiveness to initial seed points in terms of location and quantity, as well as the freedom of selecting parameters in edge weighting function. The evaluation results of SPARSE also demonstrate substantial improvements in accuracy and robustness to inhomogeneous target segmentation over the original random walks algorithm.
在医学图像处理中,对不均匀目标进行稳健分割是一个具有挑战性的问题。由于医学图像的复杂性和多样性,常用的半自动分割算法在分割不均匀物体时通常会失败。在本研究中,我们提出了一种新颖的算法,即用于随机游走分割增强的种子点自动生成算法(SPARSE),以更好地分割不均匀物体。通过少量用户标记点,SPARSE能够通过估计每个体素相对于标签的概率来生成扩展种子点。然后将随机游走算法应用于扩展种子点以获得改进的分割结果。SPARSE是在图形处理单元(GPU)硬件平台上的计算统一设备架构(CUDA)编程环境下实现的。使用临床均匀和不均匀病例进行定量评估。结果发现,SPARSE在初始种子点的位置和数量方面以及边缘加权函数中参数选择的自由度方面,能够大大降低对初始种子点的敏感性。SPARSE的评估结果还表明,与原始随机游走算法相比,在不均匀目标分割的准确性和稳健性方面有显著提高。