Li Yongxiao, Montague Samantha J, Brüstle Anne, He Xuefei, Gillespie Cathy, Gaus Katharina, Gardiner Elizabeth E, Lee Woei Ming
Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia.
ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
J Biophotonics. 2018 Jul;11(7):e201700341. doi: 10.1002/jbio.201700341. Epub 2018 Apr 10.
In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system.
在本研究中,我们引入了两项关键改进,克服了现有多边形扫描显微镜的局限性,同时在大视野(FOV)上保持了高空间和时间成像分辨率。首先,我们提出了一种简单直接的方法来控制多边形镜的扫描角度,以进行光操控,而无需借助高速光学调制器。其次,我们设计了一种灵活的数据采样方法,直接使图像对比度提高了2倍以上,并在0.25Hz时每帧生成1亿像素(10240×10240)的数字图像。这产生了亚衍射极限像素(在512μm的FOV上每个像素60nm),增加了通过计算提取信号的自由度。独特的光学和数字控制相结合,记录了荧光巨型单层囊泡内局部光漂白(r~10μm)后的精细荧光恢复,以及体内血栓形成过程中激光诱导损伤后的微血管动力学。这些新的改进扩展了任何多边形扫描显微镜系统的定量生物成像能力。