Suppr超能文献

将 T 细胞靶向成分分离到磁性聚集纳米颗粒上可增强激活。

Separating T Cell Targeting Components onto Magnetically Clustered Nanoparticles Boosts Activation.

出版信息

Nano Lett. 2018 Mar 14;18(3):1916-1924. doi: 10.1021/acs.nanolett.7b05284. Epub 2018 Feb 28.

Abstract

T cell activation requires the coordination of a variety of signaling molecules including T cell receptor-specific signals and costimulatory signals. Altering the composition and distribution of costimulatory molecules during stimulation greatly affects T cell functionality for applications such as adoptive cell therapy (ACT), but the large diversity in these molecules complicates these studies. Here, we develop and validate a reductionist T cell activation platform that enables streamlined customization of stimulatory conditions. This platform is useful for the optimization of ACT protocols as well as the more general study of immune T cell activation. Rather than decorating particles with both signal 1 antigen and signal 2 costimulus, we use distinct, monospecific, paramagnetic nanoparticles, which are then clustered on the cell surface by a magnetic field. This allows for rapid synthesis and characterization of a small number of single-signal nanoparticles which can be systematically combined to explore and optimize T cell activation. By increasing cognate T cell enrichment and incorporating additional costimulatory molecules using this platform, we find significantly higher frequencies and numbers of cognate T cells stimulated from an endogenous population. The magnetic field-induced association of separate particles thus provides a tool for optimizing T cell activation for adoptive immunotherapy and other immunological studies.

摘要

T 细胞的激活需要多种信号分子的协调,包括 T 细胞受体特异性信号和共刺激信号。在刺激过程中改变共刺激分子的组成和分布会极大地影响 T 细胞的功能,例如过继细胞治疗 (ACT),但这些分子的多样性使得这些研究变得复杂。在这里,我们开发并验证了一种简化的 T 细胞激活平台,可实现刺激条件的简化定制。该平台可用于优化 ACT 方案,以及更一般的免疫 T 细胞激活研究。我们没有用信号 1 抗原和信号 2 共刺激物来修饰颗粒,而是使用了独特的、单特异性的顺磁纳米颗粒,然后通过磁场将其在细胞表面聚集。这使得可以快速合成和表征少量的单信号纳米颗粒,然后可以系统地将它们组合起来以探索和优化 T 细胞的激活。通过使用该平台增加同源 T 细胞的富集并结合其他共刺激分子,我们发现从内源性群体中刺激同源 T 细胞的频率和数量显著增加。因此,磁场诱导的单独颗粒的缔合为优化过继免疫治疗和其他免疫研究中的 T 细胞激活提供了一种工具。

相似文献

1
Separating T Cell Targeting Components onto Magnetically Clustered Nanoparticles Boosts Activation.
Nano Lett. 2018 Mar 14;18(3):1916-1924. doi: 10.1021/acs.nanolett.7b05284. Epub 2018 Feb 28.
3
A triad of costimulatory molecules synergize to amplify T-cell activation in both vector-based and vector-infected dendritic cell vaccines.
Artif Cells Blood Substit Immobil Biotechnol. 2003 May;31(2):193-228. doi: 10.1081/bio-120020178.
4
Selective activation of antigen-experienced T cells by anti-CD3 constrained on nanoparticles.
J Immunol. 2013 Nov 15;191(10):5107-14. doi: 10.4049/jimmunol.1301433. Epub 2013 Oct 4.
7
IκBα Nuclear Export Enables 4-1BB-Induced cRel Activation and IL-2 Production to Promote CD8 T Cell Immunity.
J Immunol. 2020 Sep 15;205(6):1540-1553. doi: 10.4049/jimmunol.2000039. Epub 2020 Aug 14.
9
A Tumor-Peptide-Based Nanoparticle Vaccine Elicits Efficient Tumor Growth Control in Antitumor Immunotherapy.
Mol Cancer Ther. 2019 Jun;18(6):1069-1080. doi: 10.1158/1535-7163.MCT-18-0764. Epub 2019 Apr 8.

引用本文的文献

1
Biomolecule Conjugation Strategy for HAGM Cryogels to Create 3D Immune Niches that Induce Multifunctional T Cells.
ACS Biomater Sci Eng. 2025 Aug 11;11(8):4773-4787. doi: 10.1021/acsbiomaterials.5c00134. Epub 2025 Jul 19.
4
Oral microbiota-host interaction: the chief culprit of alveolar bone resorption.
Front Immunol. 2024 Feb 22;15:1254516. doi: 10.3389/fimmu.2024.1254516. eCollection 2024.
5
Artificial Antigen-Presenting Cell Fabrication for Murine T Cell Expansion.
Curr Protoc. 2024 Feb;4(2):e976. doi: 10.1002/cpz1.976.
6
In Vivo Stimulation of Therapeutic Antigen-Specific T Cells in an Artificial Lymph Node Matrix.
Adv Mater. 2024 Jun;36(23):e2310043. doi: 10.1002/adma.202310043. Epub 2024 Mar 1.
7
T cell-mediated curation and restructuring of tumor tissue coordinates an effective immune response.
Cell Rep. 2023 Dec 26;42(12):113494. doi: 10.1016/j.celrep.2023.113494. Epub 2023 Dec 11.
8
Nanoparticles for Interrogation of Cell Signaling.
Annu Rev Anal Chem (Palo Alto Calif). 2023 Jun 14;16(1):333-351. doi: 10.1146/annurev-anchem-092822-085852.
9
Cancer Stem Cells in Colorectal Cancer: Implications for Targeted Immunotherapies.
J Gastrointest Cancer. 2023 Dec;54(4):1046-1057. doi: 10.1007/s12029-023-00945-0. Epub 2023 May 29.

本文引用的文献

1
Biologically Inspired Design of Nanoparticle Artificial Antigen-Presenting Cells for Immunomodulation.
Nano Lett. 2017 Nov 8;17(11):7045-7054. doi: 10.1021/acs.nanolett.7b03734. Epub 2017 Oct 10.
3
Dynamic Regulation of TCR-Microclusters and the Microsynapse for T Cell Activation.
Front Immunol. 2016 Jun 28;7:255. doi: 10.3389/fimmu.2016.00255. eCollection 2016.
4
Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy.
ACS Nano. 2015 Jul 28;9(7):6861-71. doi: 10.1021/acsnano.5b02829. Epub 2015 Jul 14.
6
Adoptive cell transfer as personalized immunotherapy for human cancer.
Science. 2015 Apr 3;348(6230):62-8. doi: 10.1126/science.aaa4967.
7
OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence.
J Immunol. 2015 Jan 1;194(1):125-133. doi: 10.4049/jimmunol.1401644. Epub 2014 Nov 17.
8
Linking form to function: Biophysical aspects of artificial antigen presenting cell design.
Biochim Biophys Acta. 2015 Apr;1853(4):781-90. doi: 10.1016/j.bbamcr.2014.09.001. Epub 2014 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验