文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性靶向过继转输的肿瘤特异性载药纳米颗粒 CD8 T 细胞不能改善其在癌症小鼠模型中的肿瘤浸润,反而促进这些细胞在肿瘤引流淋巴结中的滞留。

Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8 T cells does not improve their tumour infiltration in a mouse model of cancer but promotes the retention of these cells in tumour-draining lymph nodes.

机构信息

Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.

出版信息

J Nanobiotechnology. 2019 Aug 6;17(1):87. doi: 10.1186/s12951-019-0520-0.


DOI:10.1186/s12951-019-0520-0
PMID:31387604
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6683429/
Abstract

BACKGROUND: Adoptive T cell-transfer (ATC) therapy is a highly promising cancer-treatment approach. However, in vivo-administered T cells tend to disperse, with only a small proportion reaching the tumour. To remedy this, magnetic targeting of T cells has been recently explored. Magnetic nanoparticles (MNPs) functionalised with antibodies were attached to effector T cells and magnetically recruited to tumour sites under MRI guidance. In this study, we investigated whether 3-aminopropyl-triethoxysilane (APS)-coated MNPs directly attached to CD8 T cell membranes could also magnetically target and accumulate tumour-specific CD8 T cells in solid tumours using an external magnetic field (EMF). As it has been shown that T cells associated with APS-coated MNPs are retained in lymph nodes (LNs), and tumour-draining LNs are the most common sites of solid-tumour metastases, we further evaluated whether magnetic targeting of APS-MNP-loaded CD8 T cells could cause them to accumulate in tumour-draining LNs. RESULTS: First, we show that antigen-specific CD8 T cells preserve their antitumor activity in vitro when associated with APS-MNPs. Next, we demonstrate that the application of a magnetic field enhanced the retention of APS-MNP-loaded OT-I CD8 T cells under flow conditions in vitro. Using a syngeneic mouse model, we found similar numbers of APS-MNP-loaded OT-I CD8 T cells and OT-I CD8 T cells infiltrating the tumour 14 days after cell transfer. However, when a magnet was placed near the tumour during the transfer of tumour-specific APS-MNP-loaded CD8 T cells to improve tumour infiltration, a reduced percentage of tumour-specific T cells was found infiltrating the tumour 14 days after cell transfer, which was reflected in a smaller reduction in tumour size compared to tumour-specific CD8 T cells transferred with or without MNPs in the absence of a magnetic field. Nonetheless, magnet placement near the tumour site during cell transfer induced infiltration of activated tumour-specific CD8 T cells in tumour-draining LNs, which remained 14 days after cell transfer. CONCLUSIONS: The use of an EMF to improve targeting of tumour-specific T cells modified with APS-MNPs reduced the percentage of these cells infiltrating the tumour, but promoted the retention and the persistence of these cells in the tumour-draining LNs.

摘要

背景:过继性 T 细胞转移(ATC)疗法是一种很有前途的癌症治疗方法。然而,体内给予的 T 细胞往往会分散,只有一小部分到达肿瘤部位。为了解决这个问题,最近已经探索了 T 细胞的磁靶向。用抗体功能化的磁性纳米颗粒(MNPs)附着在效应 T 细胞上,并在 MRI 引导下通过磁场将其募集到肿瘤部位。在这项研究中,我们研究了 3-氨基丙基三乙氧基硅烷(APS)涂层的 MNPs 是否可以直接附着在 CD8 T 细胞膜上,通过外加磁场(EMF)靶向和聚集实体瘤中的肿瘤特异性 CD8 T 细胞。因为已经表明与 APS 涂层的 MNPs 相关的 T 细胞保留在淋巴结(LNs)中,并且肿瘤引流 LNs 是实体瘤转移的最常见部位,所以我们进一步评估了磁性靶向负载 APS-MNP 的 CD8 T 细胞是否可以导致它们在肿瘤引流 LNs 中积累。

结果:首先,我们表明,与 APS-MNPs 结合的抗原特异性 CD8 T 细胞在体外保留其抗肿瘤活性。接下来,我们证明,在外加磁场的应用下,体外流动条件下负载 APS-MNP 的 OT-I CD8 T 细胞的保留率增强。使用同种小鼠模型,我们发现细胞转移后 14 天,负载 APS-MNP 的 OT-I CD8 T 细胞和 OT-I CD8 T 细胞浸润肿瘤的数量相似。然而,当在肿瘤特异性 APS-MNP 负载的 CD8 T 细胞转移期间将磁铁放置在肿瘤附近以改善肿瘤浸润时,与没有磁场的情况下转移肿瘤特异性 CD8 T 细胞或不转移 MNPs 相比,发现肿瘤特异性 T 细胞浸润肿瘤的百分比降低,这反映在肿瘤大小的减小与没有磁场的情况下相比。尽管如此,在细胞转移期间将磁铁放置在肿瘤部位附近会诱导肿瘤特异性 CD8 T 细胞在肿瘤引流 LNs 中的浸润,这种浸润在细胞转移后 14 天仍然存在。

结论:使用外加磁场来改善用 APS-MNPs 修饰的肿瘤特异性 T 细胞的靶向作用会降低这些细胞浸润肿瘤的百分比,但会促进这些细胞在肿瘤引流 LNs 中的保留和持久性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/6a286d433ed0/12951_2019_520_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/8b6836aaa954/12951_2019_520_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/250518f0b0be/12951_2019_520_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/ddc20657fa53/12951_2019_520_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/708c7b6aab42/12951_2019_520_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/adf3efe36292/12951_2019_520_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/4967e3bda359/12951_2019_520_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/08719badbc60/12951_2019_520_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/1c0ccb6d1aa5/12951_2019_520_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/104492103e47/12951_2019_520_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/73a0472812f4/12951_2019_520_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/bf94182efe63/12951_2019_520_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/6a286d433ed0/12951_2019_520_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/8b6836aaa954/12951_2019_520_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/250518f0b0be/12951_2019_520_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/ddc20657fa53/12951_2019_520_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/708c7b6aab42/12951_2019_520_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/adf3efe36292/12951_2019_520_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/4967e3bda359/12951_2019_520_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/08719badbc60/12951_2019_520_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/1c0ccb6d1aa5/12951_2019_520_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/104492103e47/12951_2019_520_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/73a0472812f4/12951_2019_520_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/bf94182efe63/12951_2019_520_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9769/6683429/6a286d433ed0/12951_2019_520_Fig12_HTML.jpg

相似文献

[1]
Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8 T cells does not improve their tumour infiltration in a mouse model of cancer but promotes the retention of these cells in tumour-draining lymph nodes.

J Nanobiotechnology. 2019-8-6

[2]
Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions.

Front Immunol. 2019-8-30

[3]
T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field.

J Nanobiotechnology. 2019-1-22

[4]
Reinforcement of cancer immunotherapy by adoptive transfer of cblb-deficient CD8+ T cells combined with a DC vaccine.

Immunol Cell Biol. 2011-3-8

[5]
Intratumoral interleukin-21 increases antitumor immunity, tumor-infiltrating CD8+ T-cell density and activity, and enlarges draining lymph nodes.

J Immunother. 2010-4

[6]
CD40 ligand promotes priming of fully potent antitumor CD4(+) T cells in draining lymph nodes in the presence of apoptotic tumor cells.

J Immunol. 2001-11-15

[7]
Helper-independent, L-selectinlow CD8+ T cells with broad anti-tumor efficacy are naturally sensitized during tumor progression.

J Immunol. 2000-11-15

[8]
Phenotype, functions and fate of adoptively transferred tumor draining lymphocytes activated ex vivo in mice with an aggressive weakly immunogenic mammary carcinoma.

BMC Immunol. 2010-11-4

[9]
Treatment of intracranial tumors by systemic transfer of superantigen-activated tumor-draining lymph node T cells.

Cancer Res. 1996-10-15

[10]
Administration of 6-gingerol greatly enhances the number of tumor-infiltrating lymphocytes in murine tumors.

Int J Cancer. 2011-8-29

引用本文的文献

[1]
A lyophilizable LNP vaccine enables STING-reinforced postoperational adjuvant immunotherapy.

J Nanobiotechnology. 2025-5-26

[2]
Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol. 2025-1-8

[3]
Loading of CAR-T cells with magnetic nanoparticles for controlled targeting suppresses inflammatory cytokine release and switches tumor cell death mechanism.

MedComm (2020). 2025-1-5

[4]
Personalized nanovaccines for treating solid cancer metastases.

J Hematol Oncol. 2024-11-28

[5]
Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells.

Nanomedicine (Lond). 2024

[6]
Mutuality of epigenetic and nanoparticles: two sides of a coin.

Heliyon. 2023-12-13

[7]
Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.

Int J Mol Sci. 2023-11-3

[8]
Human T cells loaded with superparamagnetic iron oxide nanoparticles retain antigen-specific TCR functionality.

Front Immunol. 2023

[9]
Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale.

Front Bioeng Biotechnol. 2023-7-21

[10]
Research progress of the engagement of inorganic nanomaterials in cancer immunotherapy.

Drug Deliv. 2022-12

本文引用的文献

[1]
Magnetic Nanoclusters Armed with Responsive PD-1 Antibody Synergistically Improved Adoptive T-Cell Therapy for Solid Tumors.

ACS Nano. 2019-2-18

[2]
T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field.

J Nanobiotechnology. 2019-1-22

[3]
Recent advances in understanding antitumor immunity.

F1000Res. 2016-10-20

[4]
Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy.

Theranostics. 2016-9-2

[5]
Metal oxide nanoparticles interact with immune cells and activate different cellular responses.

Int J Nanomedicine. 2016-9-14

[6]
Cancer immunotherapy: Killers on sterols.

Nature. 2016-3-31

[7]
The Lymphatic System in Disease Processes and Cancer Progression.

Annu Rev Biomed Eng. 2016-7-11

[8]
Adoptive cell therapy: a highly successful individualized therapy for melanoma with great potential for other malignancies.

Curr Opin Immunol. 2016-1-30

[9]
Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications.

Biomed Res Int. 2015

[10]
Combining α-Radioimmunotherapy and Adoptive T Cell Therapy to Potentiate Tumor Destruction.

PLoS One. 2015-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索