Enquist Henrik, Jurgilaitis Andrius, Jarnac Amelie, Bengtsson Åsa U J, Burza Matthias, Curbis Francesca, Disch Christian, Ekström J Carl, Harb Maher, Isaksson Lennart, Kotur Marija, Kroon David, Lindau Filip, Mansten Erik, Nygaard Jesper, Persson Anna I H, Pham Van Thai, Rissi Michael, Thorin Sara, Tu Chien Ming, Wallén Erik, Wang Xiaocui, Werin Sverker, Larsson Jörgen
MAX IV Laboratory, Lund University, PO Box 118, Lund 22100, Sweden.
Department of Physics, Lund University, PO Box 118, Lund 22100, Sweden.
J Synchrotron Radiat. 2018 Mar 1;25(Pt 2):570-579. doi: 10.1107/S1600577517017660. Epub 2018 Feb 14.
The FemtoMAX beamline facilitates studies of the structural dynamics of materials. Such studies are of fundamental importance for key scientific problems related to programming materials using light, enabling new storage media and new manufacturing techniques, obtaining sustainable energy by mimicking photosynthesis, and gleaning insights into chemical and biological functional dynamics. The FemtoMAX beamline utilizes the MAX IV linear accelerator as an electron source. The photon bursts have a pulse length of 100 fs, which is on the timescale of molecular vibrations, and have wavelengths matching interatomic distances (Å). The uniqueness of the beamline has called for special beamline components. This paper presents the beamline design including ultrasensitive X-ray beam-position monitors based on thin Ce:YAG screens, efficient harmonic separators and novel timing tools.
飞秒MAX光束线有助于开展材料结构动力学研究。此类研究对于解决与利用光对材料进行编程、开发新型存储介质和新型制造技术、通过模拟光合作用获取可持续能源以及深入了解化学和生物功能动力学相关的关键科学问题具有至关重要的意义。飞秒MAX光束线利用MAX IV直线加速器作为电子源。光子脉冲的脉冲长度为100飞秒,这与分子振动的时间尺度相当,且其波长与原子间距离(埃)相匹配。该光束线的独特性要求采用特殊的光束线组件。本文介绍了该光束线的设计,包括基于薄铈掺杂钇铝石榴石(Ce:YAG)屏幕的超灵敏X射线束位置监测器、高效谐波分离器和新型定时工具。