Suppr超能文献

无机前体在固体表面化学沉积成膜过程中的化学。

The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

机构信息

Department of Chemistry , Carleton University , Ottawa , Ontario K1S 5B6 , Canada.

Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.

出版信息

Acc Chem Res. 2018 Mar 20;51(3):800-809. doi: 10.1021/acs.accounts.8b00012. Epub 2018 Feb 28.

Abstract

The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be viewed from the point of view of the metalorganic complexes used as precursors: they are bulky and rigid, can provide multiple binding sites for a single reaction, and can promote unique bonding modes, especially on metals, which have delocalized electronic structures. The differences between the molecular and surface chemistry of CVD and ALD precursors can result in significant variations in their reactivity, ultimately leading to unpredictable properties in the newly grown films. In this Account, we discuss some of the main similarities and differences in chemistry that CVD/ALD precursors follow on surfaces when contrasted against their known behavior in solution, with emphasis on our own work but also referencing other key contributions. Our approach is unique in that it combines expertise from the inorganic, surface science, and quantum-mechanics fields to better understand the mechanistic details of the chemistry of CVD and ALD processes and to identify new criteria to consider when designing CVD/ALD precursors.

摘要

薄膜的沉积在许多工业应用中至关重要,化学气相沉积(CVD)方法在这方面特别有用。首先,化学物质的吸附具有各向同性,这使得即使在具有粗糙形貌的表面上也能获得均匀的覆盖,这在微电子学中越来越常见。此外,通过将整体薄膜沉积反应分解为两个或更多互补且自限制的步骤,如原子层沉积(ALD)中所做的那样,可以将薄膜厚度控制在亚单层水平。由于无机和金属有机前体的广泛可用性,CVD 和 ALD 非常通用,可以设计用于沉积几乎任何类型的固体材料。不利的一面是,这些过程中发生的表面化学通常很复杂,并且可能包括导致杂质掺入生长薄膜中的不希望的副反应。需要选择适当的前体和沉积条件来最小化这些问题,这需要对基础表面化学有正确的理解。CVD 和 ALD 的前体通常根据其在无机化学研究中已知的热化学来设计和选择,利用多年来在该领域中发展的广泛知识。然而,尽管这是一个很好的初步近似值,但这种方法可能会导致错误的选择,因为这些前体在气固界面上的反应与在溶液中看到的反应可能有很大不同。首先,溶剂通常有助于取代金属有机化合物中的配体,提供合适的介电环境,暂时与金属配位,或促进多个配体-配合物相互作用以增加反应概率;在与 CVD 和 ALD 相关的气固反应中,这些选择是不可用的。此外,从用作前体的金属有机配合物的角度来看,如果将这些反应视为固体表面的独特“配体”:它们体积庞大且刚性,可为单个反应提供多个结合位点,并可以促进独特的键合模式,尤其是在具有离域电子结构的金属上。CVD 和 ALD 前体的分子和表面化学之间的差异会导致其反应性的显著变化,最终导致新生长薄膜的不可预测性质。在本账目中,我们讨论了 CVD/ALD 前体在表面上遵循的化学的一些主要相似性和差异,与它们在溶液中的已知行为形成对比,重点介绍了我们自己的工作,但也参考了其他关键贡献。我们的方法是独特的,它结合了无机、表面科学和量子力学领域的专业知识,以更好地理解 CVD 和 ALD 过程化学的机制细节,并确定在设计 CVD/ALD 前体时需要考虑的新标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验