Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States.
J Chem Theory Comput. 2018 Apr 10;14(4):1828-1840. doi: 10.1021/acs.jctc.7b01178. Epub 2018 Mar 8.
We develop a nonadiabatic dynamics propagation scheme that allows interfacing diabatic quantum dynamics methods with commonly used adiabatic electronic structure calculations. This scheme uses adiabatic states as the quasi-diabatic (QD) states during a short-time quantum dynamics propagation. At every dynamical propagation step, these QD states are updated based on a new set of adiabatic basis. Using the partial linearized density matrix (PLDM) path-integral method as one specific example for diabatic dynamics approaches, we demonstrate the accuracy of the QD scheme with a wide range of model nonadiabatic systems as well as the on-the-fly propagations with density functional tight-binding (DFTB) calculations. This study opens the possibility to combine accurate diabatic quantum dynamics methods with adiabatic electronic structure calculations for nonadiabatic dynamics propagations.
我们开发了一种非绝热动力学传播方案,允许将非绝热量子动力学方法与常用的绝热电子结构计算相连接。该方案在短时间量子动力学传播期间使用绝热态作为准非绝热(QD)态。在每个动力学传播步骤中,根据新的一组绝热基,更新这些 QD 态。使用部分线性化密度矩阵(PLDM)路径积分方法作为非绝热动力学方法的一个具体示例,我们展示了 QD 方案在广泛的模型非绝热系统中的准确性,以及与密度泛函紧束缚(DFTB)计算的实时传播。这项研究为将准确的非绝热量子动力学方法与绝热电子结构计算相结合,用于非绝热动力学传播开辟了可能性。