Suppr超能文献

描述光激发非绝热动力学所需的电子结构理论:非绝热导数耦合和绝热电子耦合。

The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings.

机构信息

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.

Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States.

出版信息

Acc Chem Res. 2015 May 19;48(5):1340-50. doi: 10.1021/acs.accounts.5b00026. Epub 2015 May 1.

Abstract

Electronically photoexcited dynamics are complicated because there are so many different relaxation pathways: fluorescence, phosphorescence, radiationless decay, electon transfer, etc. In practice, to model photoexcited systems is a very difficult enterprise, requiring accurate and very efficient tools in both electronic structure theory and nonadiabatic chemical dynamics. Moreover, these theoretical tools are not traditional tools. On the one hand, the electronic structure tools involve couplings between electonic states (rather than typical single state energies and gradients). On the other hand, the dynamics tools involve propagating nuclei on multiple potential energy surfaces (rather than the usual ground state dynamics). In this Account, we review recent developments in electronic structure theory as directly applicable for modeling photoexcited systems. In particular, we focus on how one may evaluate the couplings between two different electronic states. These couplings come in two flavors. If we order states energetically, the resulting adiabatic states are coupled via derivative couplings. Derivative couplings capture how electronic wave functions change as a function of nuclear geometry and can usually be calculated with straightforward tools from analytic gradient theory. One nuance arises, however, in the context of time-dependent density functional theory (TD-DFT): how do we evaluate derivative couplings between TD-DFT excited states (which are tricky, because no wave function is available)? This conundrum was recently solved, and we review the solution below. We also discuss the solution to a second, pesky problem of origin dependence, whereby the derivative couplings do not (strictly) satisfy translation variance, which can lead to a lack of momentum conservation. Apart from adiabatic states, if we order states according to their electronic character, the resulting diabatic states are coupled via electronic or diabatic couplings. The couplings between diabatic states |ΞA⟩ and |ΞB⟩ are just the simple matrix elements, ⟨ΞA|H|ΞB⟩. A difficulty arises, however, because constructing exactly diabatic states is formally impossible and constructing quasi-diabatic states is not unique. To that end, we review recent advances in localized diabatization, which is one approach for generating adiabatic-to-diabatic (ATD) transformations. We also highlight outstanding questions in the arena of diabatization, especially how to generate multiple globally stable diabatic surfaces.

摘要

电子光激发动力学非常复杂,因为有很多不同的弛豫途径:荧光、磷光、无辐射衰减、电子转移等。在实践中,对光激发系统进行建模是一项非常困难的任务,需要在电子结构理论和非绝热化学动力学方面都具有准确和高效的工具。此外,这些理论工具不是传统工具。一方面,电子结构工具涉及电子态之间的耦合(而不是典型的单态能量和梯度)。另一方面,动力学工具涉及在多个势能面上传播原子核(而不是通常的基态动力学)。在本综述中,我们回顾了电子结构理论的最新进展,这些进展可直接应用于光激发系统的建模。特别是,我们关注如何评估两个不同电子态之间的耦合。这些耦合有两种类型。如果我们从能量上对态进行排序,那么得到的绝热态将通过导数耦合耦合在一起。导数耦合捕获电子波函数随核几何形状变化的方式,并且通常可以使用解析梯度理论的直接工具来计算。然而,在时变密度泛函理论(TD-DFT)的背景下,出现了一个细微差别:如何评估 TD-DFT 激发态之间的导数耦合(这很棘手,因为没有可用的波函数)?这个难题最近得到了解决,我们在下面回顾了解决方案。我们还讨论了起源依赖性的第二个恼人问题的解决方案,即导数耦合不(严格)满足平移变分,这可能导致缺乏动量守恒。除了绝热态之外,如果我们根据电子特征对态进行排序,那么得到的非绝热态将通过电子或非绝热耦合耦合在一起。态 |ΞA⟩和 |ΞB⟩之间的耦合就是简单的矩阵元, ⟨ΞA|H|ΞB⟩。然而,由于构造精确的非绝热态在形式上是不可能的,并且构造准非绝热态不是唯一的,因此会出现困难。为此,我们回顾了最近在局域化非绝热化方面的进展,这是非绝热到绝热(ATD)变换的一种生成方法。我们还强调了非绝热化领域的悬而未决的问题,特别是如何生成多个全局稳定的非绝热表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验