James Franck Institute, University of Chicago, Chicago, Illinois.
Institute of Science and Technology, Austria, Klosterneuburg, Austria; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
Biophys J. 2018 Feb 27;114(4):968-977. doi: 10.1016/j.bpj.2017.12.022.
Cell shape is determined by a balance of intrinsic properties of the cell as well as its mechanochemical environment. Inhomogeneous shape changes underlie many morphogenetic events and involve spatial gradients in active cellular forces induced by complex chemical signaling. Here, we introduce a mechanochemical model based on the notion that cell shape changes may be induced by external diffusible biomolecules that influence cellular contractility (or equivalently, adhesions) in a concentration-dependent manner-and whose spatial profile in turn is affected by cell shape. We map out theoretically the possible interplay between chemical concentration and cellular structure. Besides providing a direct route to spatial gradients in cell shape profiles in tissues, we show that the dependence on cell shape helps create robust mechanochemical gradients.
细胞形状由细胞的内在特性以及其机械化学环境的平衡决定。不均匀的形状变化是许多形态发生事件的基础,涉及由复杂的化学信号诱导的细胞力的空间梯度。在这里,我们引入了一个机械化学模型,该模型基于这样的假设,即细胞形状的变化可能是由外部可扩散生物分子引起的,这些生物分子以浓度依赖的方式影响细胞的收缩性(或者等效地,粘着性),并且其空间分布反过来又受到细胞形状的影响。我们从理论上描绘了化学浓度和细胞结构之间可能的相互作用。除了为组织中的细胞形状轮廓的空间梯度提供直接途径外,我们还表明,对细胞形状的依赖性有助于产生稳健的机械化学梯度。