Suppr超能文献

组织流在器官发生过程中诱导细胞形状变化。

Tissue Flow Induces Cell Shape Changes During Organogenesis.

机构信息

Department of Physics, Syracuse University, Syracuse, New York.

Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York.

出版信息

Biophys J. 2018 Dec 4;115(11):2259-2270. doi: 10.1016/j.bpj.2018.10.028. Epub 2018 Nov 6.

Abstract

In embryonic development, cell shape changes are essential for building functional organs, but in many cases, the mechanisms that precisely regulate these changes remain unknown. We propose that fluid-like drag forces generated by the motion of an organ through surrounding tissue could generate changes to its structure that are important for its function. To test this hypothesis, we study the zebrafish left-right organizer, Kupffer's vesicle (KV), using experiments and mathematical modeling. During development, monociliated cells that comprise KV undergo region-specific shape changes along the anterior-posterior axis that are critical for KV function: anterior cells become long and thin, whereas posterior cells become short and squat. Here, we develop a mathematical vertex-like model for cell shapes that incorporates both tissue rheology and cell motility and constrain the model parameters using previously published rheological data for the zebrafish tailbud as well as our own measurements of the KV speed. We find that drag forces due to dynamics of cells surrounding KV could be sufficient or work in concert with previously identified mechanisms to drive KV cell shape changes during KV development. More broadly, these results suggest that cell shape changes during embryonic development and beyond could be driven by dynamic forces not typically considered in models or experiments.

摘要

在胚胎发育过程中,细胞形状的变化对于构建功能性器官至关重要,但在许多情况下,精确调节这些变化的机制仍不清楚。我们提出,器官在周围组织中运动产生的类似流体的阻力可能会导致其结构发生变化,而这些变化对于其功能很重要。为了验证这一假设,我们使用实验和数学建模来研究斑马鱼左右组织者,即 Kupffer 泡(KV)。在发育过程中,构成 KV 的单纤毛细胞沿着前后轴经历特定区域的形状变化,这对于 KV 的功能至关重要:前部细胞变得细长,而后部细胞变得短而粗。在这里,我们开发了一种用于细胞形状的顶点样数学模型,该模型同时考虑了组织流变学和细胞运动,并使用先前发表的斑马鱼尾芽的流变学数据以及我们自己对 KV 速度的测量来约束模型参数。我们发现,由于围绕 KV 的细胞的动力学产生的阻力可能足以或与先前确定的机制协同作用,以在 KV 发育过程中驱动 KV 细胞形状的变化。更广泛地说,这些结果表明,胚胎发育过程中和之后的细胞形状变化可能是由通常在模型或实验中不考虑的动态力驱动的。

相似文献

1
Tissue Flow Induces Cell Shape Changes During Organogenesis.
Biophys J. 2018 Dec 4;115(11):2259-2270. doi: 10.1016/j.bpj.2018.10.028. Epub 2018 Nov 6.
2
3D viscoelastic drag forces contribute to cell shape changes during organogenesis in the zebrafish embryo.
Cells Dev. 2021 Dec;168:203718. doi: 10.1016/j.cdev.2021.203718. Epub 2021 Jul 14.
4
Regional cell shape changes control form and function of Kupffer's vesicle in the zebrafish embryo.
Dev Biol. 2012 Oct 1;370(1):52-62. doi: 10.1016/j.ydbio.2012.07.019. Epub 2012 Jul 26.
6
The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in zebrafish.
Development. 2011 Jan;138(1):45-54. doi: 10.1242/dev.052985. Epub 2010 Nov 23.
7
The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ.
Dev Cell. 2014 Dec 22;31(6):774-83. doi: 10.1016/j.devcel.2014.11.003.
8
Cytokinetic bridge triggers de novo lumen formation in vivo.
Nat Commun. 2020 Mar 9;11(1):1269. doi: 10.1038/s41467-020-15002-8.
9
Lethal giant larvae 2 regulates development of the ciliated organ Kupffer's vesicle.
Development. 2013 Apr;140(7):1550-9. doi: 10.1242/dev.087130.
10
Kupffer's vesicle size threshold for robust left-right patterning of the zebrafish embryo.
Dev Dyn. 2016 Jan;245(1):22-33. doi: 10.1002/dvdy.24355. Epub 2015 Nov 3.

引用本文的文献

1
Dynamic forces drive cell and organ morphology changes during embryonic development.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2418111122. doi: 10.1073/pnas.2418111122. Epub 2025 Jul 15.
2
Dynamical forces drive organ morphology changes during embryonic development.
bioRxiv. 2024 Jul 17:2024.07.13.603371. doi: 10.1101/2024.07.13.603371.
3
An emerging role for tissue plasticity in developmental precision.
Biochem Soc Trans. 2024 Jun 26;52(3):987-995. doi: 10.1042/BST20230173.
4
From cells to form: A roadmap to study shape emergence in vivo.
Biophys J. 2023 Sep 19;122(18):3587-3599. doi: 10.1016/j.bpj.2023.05.015. Epub 2023 May 25.
5
Understanding laterality disorders and the left-right organizer: Insights from zebrafish.
Front Cell Dev Biol. 2022 Dec 23;10:1035513. doi: 10.3389/fcell.2022.1035513. eCollection 2022.
6
Configurational fingerprints of multicellular living systems.
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2109168118.
7
3D viscoelastic drag forces contribute to cell shape changes during organogenesis in the zebrafish embryo.
Cells Dev. 2021 Dec;168:203718. doi: 10.1016/j.cdev.2021.203718. Epub 2021 Jul 14.
8
The Shape and Function of Solid Fascias Depend on the Presence of Liquid Fascias.
Cureus. 2020 Feb 10;12(2):e6939. doi: 10.7759/cureus.6939.

本文引用的文献

1
Jamming of Deformable Polygons.
Phys Rev Lett. 2018 Dec 14;121(24):248003. doi: 10.1103/PhysRevLett.121.248003.
2
A fluid-to-solid jamming transition underlies vertebrate body axis elongation.
Nature. 2018 Sep;561(7723):401-405. doi: 10.1038/s41586-018-0479-2. Epub 2018 Sep 5.
3
Flocking transitions in confluent tissues.
Soft Matter. 2018 May 9;14(18):3471-3477. doi: 10.1039/c8sm00126j.
4
Theory of Epithelial Cell Shape Transitions Induced by Mechanoactive Chemical Gradients.
Biophys J. 2018 Feb 27;114(4):968-977. doi: 10.1016/j.bpj.2017.12.022.
5
Soft yet Sharp Interfaces in a Vertex Model of Confluent Tissue.
Phys Rev Lett. 2018 Feb 2;120(5):058001. doi: 10.1103/PhysRevLett.120.058001.
7
Correlating cell shape and cellular stress in motile confluent tissues.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12663-12668. doi: 10.1073/pnas.1705921114. Epub 2017 Nov 14.
8
Motility-driven glass and jamming transitions in biological tissues.
Phys Rev X. 2016 Apr-Jun;6(2). doi: 10.1103/PhysRevX.6.021011. Epub 2016 Apr 21.
9
Planar cell polarity-dependent and independent functions in the emergence of tissue-scale hair follicle patterns.
Dev Biol. 2017 Aug 1;428(1):188-203. doi: 10.1016/j.ydbio.2017.06.003. Epub 2017 Jun 7.
10
Friction forces position the neural anlage.
Nat Cell Biol. 2017 Apr;19(4):306-317. doi: 10.1038/ncb3492. Epub 2017 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验