Suppr超能文献

基于个体视网膜神经纤维层厚度分布的视野采样。

Sampling the Visual Field Based on Individual Retinal Nerve Fiber Layer Thickness Profile.

机构信息

VST Glaucoma Centre, LV Prasad Eye Institute, Hyderabad, India.

Computing and Information Systems, The University of Melbourne, Melbourne, Australia.

出版信息

Invest Ophthalmol Vis Sci. 2018 Feb 1;59(2):1066-1074. doi: 10.1167/iovs.17-21979.

Abstract

PURPOSE

Current perimeters use fixed grid patterns. We test whether a grid based on an individual's retinal nerve fiber layer (RNFL) thickness profile would find more visual field (VF) defects.

METHODS

We describe the defect-based method for choosing test locations. First, the 26 VF locations with the highest positive predictive value to detect glaucoma from the 24-2 pattern are chosen. An additional 26 locations are chosen from a 2 × 2 degree grid based on RNFL thickness. An individualized map was used to relate VF locations to peripapillary RNFL thickness. To test whether the 52 locations chosen by the defect-based method find more defects than other test grids, we collected a 386-location (2 × 2 degree grid) VF measurement on 23 glaucoma participants and classed each location in the dataset as either abnormal or normal using a suprathreshold test. Using this data, defect-based sampling was compared to: a method that sampled VF locations uniformly around the optic nerve head (ONH); the 24-2 pattern; a polar pattern; and a reduced polar pattern. The outcome measure was the number of abnormal points that were selected as test locations.

RESULTS

For 8 eyes, no method found more abnormal points than would be expected by chance (hypergeometric distribution, P < 0.05). Of the remaining 15 eyes, the defect-based method identified more abnormal locations on nine eyes, which was significantly better than the other three sampling schemes (24-2: 2 eyes, P < 0.001; polar: 2 eyes, P < 0.001; reduced polar: 2 eyes, P < 0.004; and uniform: 1 eye, P < 0.001).

CONCLUSIONS

Using structural information to choose locations to test in a VF for individual patients identifies more abnormal locations than using existing grid patterns and uniform sampling based on structure.

摘要

目的

目前的视场边界使用固定的网格模式。我们测试基于个体视网膜神经纤维层(RNFL)厚度分布的网格是否能发现更多的视野(VF)缺陷。

方法

我们描述了基于缺陷选择测试位置的方法。首先,从 24-2 模式中选择具有最高阳性预测值以检测青光眼的 26 个 VF 位置。根据 RNFL 厚度,从 2×2 度网格中选择另外 26 个位置。使用个体化地图将 VF 位置与视盘周围 RNFL 厚度相关联。为了测试基于缺陷的方法选择的 52 个位置是否比其他测试网格发现更多的缺陷,我们在 23 名青光眼患者中收集了 386 个位置(2×2 度网格)的 VF 测量值,并使用超阈值测试将数据集中的每个位置归类为异常或正常。使用该数据,基于缺陷的采样与以下方法进行了比较:一种在视神经头(ONH)周围均匀采样 VF 位置的方法;24-2 模式;极坐标模式;和简化极坐标模式。测量结果为作为测试位置选择的异常点的数量。

结果

对于 8 只眼睛,没有一种方法发现的异常点比预期的机会(超几何分布,P < 0.05)更多。在其余 15 只眼中,基于缺陷的方法在 9 只眼中识别出更多的异常位置,这明显优于其他三种采样方案(24-2:2 只眼睛,P < 0.001;极坐标:2 只眼睛,P < 0.001;简化极坐标:2 只眼睛,P < 0.004;和均匀:1 只眼睛,P < 0.001)。

结论

使用结构信息选择个体患者 VF 中的测试位置比使用现有的网格模式和基于结构的均匀采样更能识别出异常位置。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验