Suppr超能文献

污染物浓度与流速:地下水模型系统中生物降解和微生物生长的驱动因素。

Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.

机构信息

Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.

Center for Applied Geoscience, University of Tübingen, Hölderlinstrasse 12, 72074, Tübingen, Germany.

出版信息

Biodegradation. 2018 Jun;29(3):211-232. doi: 10.1007/s10532-018-9824-2. Epub 2018 Feb 28.

Abstract

Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific "carrying capacity" depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.

摘要

芳烃属于地下水中最丰富的污染物之一。它们可以作为许多土著微生物的碳源和能源。由于预测污染含水层中污染物生物降解和微生物生长的数学模型中的微生物活性参数通常是从批量实验中得出的,而批量实验并不能代表现场条件,因此预测通常是模糊的。为了提高我们对自然衰减关键驱动因素的理解和预测模型的准确性,我们在批次和泥沙流动系统中进行了对比实验,在入口处存在不同浓度的污染物和不同的流速,应用好氧假单胞菌 F1 和反硝化菌 Aromatoleum aromaticum EbN1。我们通过测量甲苯和氧气浓度以及直接细胞计数来跟踪甲苯的降解和细菌生长。在泥沙柱中,随着源浓度和流速的增加,P. putida F1 降解的甲苯总量增加,而甲苯去除效率逐渐降低。结果表明,传质限制是控制甲苯生物降解的重要过程,这一过程不能用批量实验来评估。我们还观察到最大比生长速率随源浓度和流速的增加而降低。在低甲苯浓度下,流动系统中的碳同化效率高于批量系统。在所有柱实验中,附着细胞数量在初始生长阶段后达到稳定,表明存在特定的“承载能力”,这取决于污染物浓度和流速。此外,在所有情况下,附着在沉积物上的细胞都超过了悬浮细胞,并且甲苯降解实际上仅由附着细胞完成。通过改变污染物入口浓度和流速观察到的生物降解影响可以用反应传输模型来捕捉。通过监测附着细胞和悬浮细胞,我们可以量化从沉积物释放到可移动水相的新生长细胞。在泥沙流动微环境中研究流速和污染物浓度作为污染物转化的关键驱动因素,提高了我们对系统的理解,最终提高了对污染场地微生物生物降解的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e9a/5943387/7dc4b0ca3712/10532_2018_9824_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验