Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research UFZ, Leipzig 04318, Germany.
Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, Seville E-41012, Spain.
Environ Sci Technol. 2024 Oct 15;58(41):18234-18243. doi: 10.1021/acs.est.4c02924. Epub 2024 Oct 1.
Biofiltration is a simple and low-cost method for the cleanup of contaminated water. However, the reduced availability of dissolved chemicals to surface-attached degrader bacteria may limit its efficient use at certain hydraulic loadings. When a direct current (DC) electric field is applied to an immersed packed bed, it invokes electrokinetic processes, such as electroosmotic water flow (EOF). EOF is a surface-charge-induced plug-flow-shaped movement of pore fluids. It acts at a nanometer distance above surfaces and allows the change of microscale pressure-driven flow profiles and, hence, the availability of dissolved contaminants to microbial degraders. In laboratory percolation columns, we assessed the effects of a weak DC electric field ( = 0.5 V·cm) on the biodegradation of waterborne naphthalene (NAH) by surface-attached LP6a. To vary NAH bioavailability, we used different NAH concentrations ( = 2.7, 5.1, or 7.8 × 10 mol·L) and Darcy velocities typical for biofiltration ( = 0.2-1.2 × 10 m·s). In DC-free controls, we observed higher specific degradation rates () at higher NAH concentrations. The depended on , suggesting bioavailability restrictions depending on the hydraulic residence times. DC fields consistently increased and resulted in linearly increasing benefits up to 55% with rising hydraulic loadings relative to controls. We explain these biodegradation benefits by EOF-altered microscale flow profiles allowing for better NAH provision to bacteria attached to the collectors even though the EOF was calculated to be 100-800 times smaller than bulk water flow. Our data suggest that electrokinetic approaches may give rise to future technical applications that allow regulating biodegradation, for example, in response to fluctuating hydraulic loadings.
生物过滤是一种简单且低成本的受污染水净化方法。然而,附着在表面的降解菌可利用的溶解化学物质的减少可能会限制其在某些水力负荷下的有效使用。当直流(DC)电场施加到浸入式填充床时,它会引起电动过程,例如电渗流(EOF)。EOF 是一种由表面电荷引起的、具有塞流形状的孔隙流体流动。它在距表面纳米距离处起作用,并允许改变微尺度压力驱动的流动轮廓,从而增加微生物降解剂对溶解污染物的利用率。在实验室渗滤柱中,我们评估了弱 DC 电场(= 0.5 V·cm)对附着在表面的 LP6a 对水载萘(NAH)的生物降解的影响。为了改变 NAH 的生物利用度,我们使用了不同的 NAH 浓度(= 2.7、5.1 或 7.8×10-5 mol·L)和生物过滤典型的达西流速(= 0.2-1.2×10-3 m·s)。在无 DC 控制下,我们观察到在较高的 NAH 浓度下,特定降解率()更高。取决于,这表明生物利用度受限取决于水力停留时间。DC 场始终增加,并导致与对照相比,水力负荷增加时,生物降解率线性增加,最高可达 55%。我们通过 EOF 改变的微尺度流动剖面来解释这些生物降解的益处,即使计算得出的 EOF 比主体水流小 100-800 倍,EOF 也允许更好地向附着在集电器上的细菌提供 NAH。我们的数据表明,电动方法可能会带来未来的技术应用,例如,可以根据水力负荷的波动来调节生物降解。