Ion Microscopy Innovation Center, Carl Zeiss Microscopy LLC, One Corporation Way, Peabody, MA 01960, USA.
Nanoscale. 2018 Mar 15;10(11):5198-5204. doi: 10.1039/c7nr08406d.
The fabrication of solid-state nanopores in an insulating membrane has attracted much attention for biomolecule analysis such as DNA sequencing and detection in recent years. For practical applications and device integration, the challenges include precise size control for sub 10 nm nanopores, excellent repeatability and rapid fabrication over a large area to reduce the cost for mass production. A helium ion beam could provide an effective fabrication approach to produce such solid-state nanopores. It is easy to control the nanopore size and reach sub 10 nm pore size with a simple change in the milling time with an appropriate ion beam current. Here we report new results in a set of experiments demonstrating that with a small range of stage automatized motions and equal mill times one can obtain good fabrication reproducibility in nanopore sizes (<10% variation in size). The automation in the stage motion and milling time opens a door for the rapid mass production of nanopore chips over a wafer size of several inches.
近年来,在绝缘膜中制造固态纳米孔在生物分子分析(如 DNA 测序和检测)方面引起了广泛关注。对于实际应用和设备集成,挑战包括对小于 10nm 的纳米孔进行精确的尺寸控制、出色的可重复性以及在大面积上的快速制造,以降低大规模生产的成本。氦离子束可以提供一种有效的制造方法来产生这种固态纳米孔。通过简单地改变离子束电流下的研磨时间,很容易控制纳米孔的尺寸,并达到小于 10nm 的孔径。在这里,我们报告了一组实验中的新结果,表明通过小范围的自动平台运动和相等的研磨时间,可以在纳米孔尺寸(尺寸变化小于 10%)方面获得良好的制造可重复性。平台运动和研磨时间的自动化为在几英寸晶圆尺寸上快速批量生产纳米孔芯片开辟了道路。