Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland.
Centro S3 , CNR-Istituto Nanoscienze , 41125 Modena , Italy.
J Chem Theory Comput. 2018 May 8;14(5):2549-2557. doi: 10.1021/acs.jctc.7b01116. Epub 2018 Apr 4.
Electronic-structure functionals that include screening effects, such as Hubbard or Koopmans' functionals, are required to describe the response of a system to the fractional addition or removal of an electron from an orbital or a manifold. Here, we present a general method to incorporate screening based on linear-response theory, and we apply it to the case of orbital-by-orbital screening of Koopmans' functionals. We illustrate the importance of such generalization when dealing with challenging systems containing orbitals with very different chemical character, also highlighting the simple dependence of the screening on the localization of the orbitals. We choose a set of 46 transition-metal complexes for which experimental data and accurate many-body perturbation theory calculations are available. When compared to experiment, results for ionization potentials show a very good performance, with a mean absolute error of 0.2 eV, comparable to the most accurate many-body perturbation theory approaches. These results reiterate the role of Koopmans-compliant functionals as simple and accurate quasiparticle approximations to the exact spectral functional, bypassing diagrammatic expansions and relying only on the physics of the local density or generalized-gradient approximation.
需要包含屏蔽效应的电子结构泛函,如 Hubbard 泛函或 Koopmans 泛函,以描述系统对从轨道或能级中添加或去除一个电子的响应。在这里,我们提出了一种基于线性响应理论的通用方法来包含屏蔽,并将其应用于 Koopmans 泛函的轨道间屏蔽情况。我们说明了在处理具有非常不同化学性质的轨道的挑战性系统时,这种泛化的重要性,同时还强调了屏蔽对轨道局域化的简单依赖性。我们选择了一组 46 个过渡金属配合物,这些配合物有实验数据和精确的多体微扰理论计算。与实验相比,对于离子化能的结果显示出非常好的性能,平均绝对误差为 0.2eV,与最准确的多体微扰理论方法相当。这些结果重申了 Koopmans 一致泛函作为精确谱泛函的简单而准确的准粒子近似的作用,绕过了图式扩展,仅依赖于局域密度或广义梯度近似的物理。