Suppr超能文献

基于含长程校正(LC)泛函的库普曼斯对科恩-沙姆理论的预测得到的垂直电离势基准。

Vertical ionization potential benchmarks from Koopmans prediction of Kohn-Sham theory with long-range corrected (LC) functional.

作者信息

Hirao Kimihiko, Bae Han-Seok, Song Jong-Won, Chan Bun

机构信息

Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan.

RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan.

出版信息

J Phys Condens Matter. 2022 Mar 7;34(19). doi: 10.1088/1361-648X/ac54e3.

Abstract

The Kohn-Sham density functional theory (KS-DFT) with the long-range corrected (LC) functional is applied to the benchmark dataset of 401 valence ionization potentials (IPs) of 63 small molecules of Chong, Gritsenko and Baerends (the CGB set). The vertical IP of the CGB set are estimated as negative orbital energies within the context of the Koopmans' prediction using the LCgau-core range-separation scheme in combination with PW86-PW91 exchange-correlation functional. The range separation parameterof the functional is tuned to minimize the error of the negative HOMO orbital energy from experimental IP. The results are compared with literature data, includingIP variant of the equation-of-motion coupled cluster theory with singles and doubles (IP-EOM-CCSD), the negative orbital energies calculated by KS-DFT with the statistical averaging of orbital potential, and those with the QTP family of functionals. The optimally tuned LC functional performs better than other functionals for the estimation of valence level IP. The mean absolute deviations (MAD) from experiment and from IP-EOM-CCSD are 0.31 eV (1.77%) and 0.25 eV (1.46%), respectively. LCgau-core performs quite well even with fixed(not system-dependent). Avalue around 0.36 bohrgives MAD of 0.40 eV (2.42%) and 0.33 eV (1.96%) relative to experiment and IP-EOM-CCSD, respectively. The LCgau-core-PW86-PW91 functional is an efficient alternative to IP-EOM-CCSD and it is reasonably accurate for outer valence orbitals. We have also examined its application to core ionization energies of C(1s), N(1s), O(1s) and F(1s). The C(1s) core ionization energies are reproduced reasonably [MAD of 46 cases is 0.76 eV (0.26%)] but N(1s), O(1s) and F(1s) core ionization energies are predicted less accurately.

摘要

采用含长程校正(LC)泛函的Kohn-Sham密度泛函理论(KS-DFT),对Chong、Gritsenko和Baerends的63个小分子的401个价电离势(IP)基准数据集进行计算。在Koopmans预测的背景下,使用LCgau-core范围分离方案结合PW86-PW91交换相关泛函,将CGB数据集的垂直IP估计为负轨道能量。调整泛函的范围分离参数,以使负HOMO轨道能量与实验IP之间的误差最小化。将结果与文献数据进行比较,包括含单双激发的运动方程耦合簇理论的IP变体(IP-EOM-CCSD)、通过轨道势统计平均的KS-DFT计算的负轨道能量,以及使用QTP系列泛函计算的结果。对于价层IP的估计,最优调整的LC泛函比其他泛函表现更好。与实验值和IP-EOM-CCSD相比,平均绝对偏差(MAD)分别为0.31 eV(1.77%)和0.25 eV(1.46%)。即使固定(不依赖于体系),LCgau-core也表现良好。约0.36玻尔的取值相对于实验值和IP-EOM-CCSD的MAD分别为0.40 eV(2.42%)和0.33 eV(1.96%)。LCgau-core-PW86-PW91泛函是IP-EOM-CCSD的一种有效替代方法,对外层价轨道具有合理的准确性。我们还研究了其在C(1s)、N(1s)、O(1s)和F(1s)的芯电离能计算中的应用。C(1s)芯电离能得到了合理的再现(46个案例的MAD为0.76 eV(0.26%)),但N(1s)、O(1s)和F(1s)芯电离能的预测准确性较低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验