Suppr超能文献

静水压测量和柯蒂氏复合体顺应性的有限元模拟。

Hydrostatic measurement and finite element simulation of the compliance of the organ of Corti complex.

机构信息

Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Rochester, New York 14627, USA.

Department of Mechanical Engineering, University of Rochester, 212 Hopeman Engineering Building, Rochester, New York 14627, USA.

出版信息

J Acoust Soc Am. 2018 Feb;143(2):735. doi: 10.1121/1.5023206.

Abstract

In the mammalian cochlea, the geometrical and mechanical properties of the organ of Corti complex (OCC, consisting of the tectorial membrane, the organ of Corti, and the basilar membrane) have fundamental consequences for understanding the physics of hearing. Despite efforts to correlate the mechanical properties of the OCC with cochlear function, experimental data of OCC stiffness are limited due to difficulties in measurement. Modern measurements of the OCC stiffness use microprobes exclusively, but suffer ambiguity when defining the physiologically relevant stiffness due to the high nonlinearity in the force-displacement relationship. The nonlinearity stems from two sources. First, microprobes apply local force instead of fluid pressure across the OCC. Second, to obtain the functionally relevant stiffness, the OCC is deformed well beyond in vivo levels (>10 μm). The objective of this study was to develop an alternative technique to overcome challenges intrinsic to the microprobe method. Using a custom-designed microfluidic chamber system, hydrostatic pressures were applied to the excised gerbil cochlea. Deformations of the OCC due to hydrostatic pressures were analyzed through optical-axis image correlation. The pressure-displacement relationship was linear within nanoscale displacement ranges (<1 μm). To compare the results in this paper with existing measurements, a three-dimensional finite element model was used.

摘要

在哺乳动物耳蜗中,耳蜗器官复合体(OCC,由盖膜、耳蜗和基底膜组成)的几何和机械特性对理解听觉物理学具有重要意义。尽管人们努力将 OCC 的机械特性与耳蜗功能相关联,但由于测量困难,OCC 硬度的实验数据有限。现代 OCC 硬度测量仅使用微探针,但由于力-位移关系的高度非线性,在定义与生理相关的硬度时存在歧义。这种非线性源于两个来源。首先,微探针在 OCC 上施加的是局部力而不是流体压力。其次,为了获得与功能相关的硬度,OCC 的变形远远超出了体内水平(>10 μm)。本研究的目的是开发一种替代技术,以克服微探针方法固有的挑战。使用定制的微流控室系统,向切除的沙鼠耳蜗施加静压。通过光轴图像相关分析来分析 OCC 因静压而产生的变形。在纳米级位移范围内(<1 μm),压力-位移关系呈线性。为了将本文中的结果与现有测量结果进行比较,使用了三维有限元模型。

相似文献

2
The role of organ of Corti mass in passive cochlear tuning.柯蒂器质量在耳蜗被动调谐中的作用。
Biophys J. 2007 Nov 15;93(10):3434-50. doi: 10.1529/biophysj.107.109744. Epub 2007 Sep 28.
5
Deiters Cells Act as Mechanical Equalizers for Outer Hair Cells.Deiters 细胞对外毛细胞起到机械均衡作用。
J Neurosci. 2022 Nov 2;42(44):8361-8372. doi: 10.1523/JNEUROSCI.2417-21.2022. Epub 2022 Sep 19.
7
Consequences of Location-Dependent Organ of Corti Micro-Mechanics.位置依赖性柯蒂氏器微力学的后果
PLoS One. 2015 Aug 28;10(8):e0133284. doi: 10.1371/journal.pone.0133284. eCollection 2015.

引用本文的文献

1
Outer hair cells stir cochlear fluids.外毛细胞搅动耳蜗内的液体。
Elife. 2025 Jan 16;13:RP101943. doi: 10.7554/eLife.101943.
2
Outer hair cells stir cochlear fluids.外毛细胞搅动耳蜗内的液体。
bioRxiv. 2024 Nov 12:2024.08.07.607009. doi: 10.1101/2024.08.07.607009.
3
Deiters Cells Act as Mechanical Equalizers for Outer Hair Cells.Deiters 细胞对外毛细胞起到机械均衡作用。
J Neurosci. 2022 Nov 2;42(44):8361-8372. doi: 10.1523/JNEUROSCI.2417-21.2022. Epub 2022 Sep 19.
4
Multiscale modeling of mechanotransduction in the utricle.耳石中机械转导的多尺度建模。
J Neurophysiol. 2019 Jul 1;122(1):132-150. doi: 10.1152/jn.00068.2019. Epub 2019 Apr 17.

本文引用的文献

3
Consequences of Location-Dependent Organ of Corti Micro-Mechanics.位置依赖性柯蒂氏器微力学的后果
PLoS One. 2015 Aug 28;10(8):e0133284. doi: 10.1371/journal.pone.0133284. eCollection 2015.
6
Filtering of acoustic signals within the hearing organ.听觉器官内的声信号滤波。
J Neurosci. 2014 Jul 2;34(27):9051-8. doi: 10.1523/JNEUROSCI.0722-14.2014.
9
Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse.CBA/CaJ小鼠的基底膜和盖膜硬度
J Assoc Res Otolaryngol. 2014 Oct;15(5):675-94. doi: 10.1007/s10162-014-0463-y. Epub 2014 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验