ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
J Chem Phys. 2018 Feb 28;148(8):084112. doi: 10.1063/1.5009465.
This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H={p,p,e} ion and the H = {p, p, e, e} molecule.
本文提出了质心动能消除方法的多通道推广[B. Simmen 等人,Mol. Phys. 111, 2086 (2013)],当薛定谔方程通过显式相关的高斯函数进行变分求解时。该方法在不使用玻恩-奥本海默近似的多粒子系统中具有直接的相关性,也可用于狄拉克型哈密顿量。在实验室坐标系笛卡尔坐标系中求解薛定谔方程的实际实现和数值性质,以 H={p,p,e}离子和 H = {p, p, e, e}分子的基 rovibronic 态为例进行了演示。