Suppr超能文献

抑制缺氧海龟心脏线粒体中活性氧的产生:复合物 I 亚硝化的作用。

Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I -nitrosation.

机构信息

Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark.

MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.

出版信息

J Exp Biol. 2018 Apr 25;221(Pt 8):jeb174391. doi: 10.1242/jeb.174391.

Abstract

Freshwater turtles () are among the very few vertebrates capable of tolerating severe hypoxia and re-oxygenation without suffering from damage to the heart. As myocardial ischemia and reperfusion causes a burst of mitochondrial reactive oxygen species (ROS) in mammals, the question arises as to whether, and if so how, this ROS burst is prevented in the turtle heart. We find that heart mitochondria isolated from turtles acclimated to anoxia produce less ROS than mitochondria from normoxic turtles when consuming succinate. As succinate accumulates in the hypoxic heart and is oxidized when oxygen returns, this suggests an adaptation to lessen ROS production. Specific -nitrosation of complex I can lower ROS in mammals and here we show that turtle complex I activity and ROS production can also be strongly depressed by -nitrosation. We detect endogenous -nitrosated complex I in turtle heart mitochondria, but these levels are unaffected upon anoxia acclimation. Thus, while heart mitochondria from anoxia-acclimated turtles generate less ROS and have a lower aerobic capacity than those from normoxic turtles, this is not due to decreases in complex I activity or expression levels. Interestingly, in-gel activity staining reveals that most complex I of heart mitochondria from normoxic and anoxic turtles forms stable super-complexes with other respiratory enzymes and, in contrast to mammals, these are not disrupted by dodecyl maltoside. Taken together, these results show that although -nitrosation of complex I is a potent mechanism to prevent ROS formation upon re-oxygenation after anoxia , this is not a major cause of the suppression of ROS production by anoxic turtle heart mitochondria.

摘要

淡水龟 () 是极少数能够耐受严重缺氧和再氧化而不使心脏受损的脊椎动物之一。由于心肌缺血再灌注会导致哺乳动物线粒体活性氧 (ROS) 的爆发,因此问题是这种 ROS 爆发是否以及如何在龟心中得到预防。我们发现,适应缺氧的龟心脏分离的线粒体在消耗琥珀酸盐时产生的 ROS 比正常氧合龟的线粒体少。由于琥珀酸盐在缺氧心脏中积累并在氧气返回时被氧化,这表明存在一种适应机制以减少 ROS 的产生。复合物 I 的特异性 - 亚硝化可以降低哺乳动物中的 ROS,在这里我们表明,龟复合物 I 活性和 ROS 的产生也可以被强烈抑制 - 亚硝化。我们在龟心脏线粒体中检测到内源性 - 亚硝化的复合物 I,但在缺氧适应时这些水平不受影响。因此,尽管来自缺氧适应的龟心脏线粒体产生的 ROS 较少,并且有氧能力低于正常氧合的龟心脏线粒体,但这不是由于复合物 I 活性或表达水平降低所致。有趣的是,凝胶内活性染色显示,来自正常氧合和缺氧龟的心脏线粒体的大多数复合物 I 与其他呼吸酶形成稳定的超复合物,与哺乳动物不同,这些复合物不会被十二烷基麦芽糖破坏。总之,这些结果表明,尽管复合物 I 的 - 亚硝化是在缺氧后再氧化时防止 ROS 形成的有效机制,但这不是缺氧龟心脏线粒体抑制 ROS 产生的主要原因。

相似文献

2
Low production of mitochondrial reactive oxygen species after anoxia and reoxygenation in turtle hearts.
J Exp Biol. 2023 May 1;226(9). doi: 10.1242/jeb.245516. Epub 2023 May 10.
6
Anoxia-induced changes in reactive oxygen species and cyclic nucleotides in the painted turtle.
J Comp Physiol B. 2007 May;177(4):473-81. doi: 10.1007/s00360-007-0145-8. Epub 2007 Mar 9.
7
Mitochondrial responses to prolonged anoxia in brain of red-eared slider turtles.
Biol Lett. 2016 Jan;12(1):20150797. doi: 10.1098/rsbl.2015.0797.

引用本文的文献

4
Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae).
J Comp Physiol B. 2023 Aug;193(4):413-424. doi: 10.1007/s00360-023-01495-4. Epub 2023 May 5.
5
Low production of mitochondrial reactive oxygen species after anoxia and reoxygenation in turtle hearts.
J Exp Biol. 2023 May 1;226(9). doi: 10.1242/jeb.245516. Epub 2023 May 10.
6
New insights into survival strategies to oxygen deprivation in anoxia-tolerant vertebrates.
Acta Physiol (Oxf). 2022 Jul;235(3):e13841. doi: 10.1111/apha.13841. Epub 2022 May 19.
7
Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species.
Front Physiol. 2022 Apr 25;13:897174. doi: 10.3389/fphys.2022.897174. eCollection 2022.
9
Supercomplex Organization of the Electron Transfer System in Marine Bivalves, a Model of Extreme Longevity.
J Gerontol A Biol Sci Med Sci. 2022 Feb 3;77(2):283-290. doi: 10.1093/gerona/glab363.

本文引用的文献

1
Identification and quantification of protein -nitrosation by nitrite in the mouse heart during ischemia.
J Biol Chem. 2017 Sep 1;292(35):14486-14495. doi: 10.1074/jbc.M117.798744. Epub 2017 Jul 14.
2
The Enigma of the Respiratory Chain Supercomplex.
Cell Metab. 2017 Apr 4;25(4):765-776. doi: 10.1016/j.cmet.2017.03.009.
4
Structure of Mammalian Respiratory Supercomplex IIIIIV.
Cell. 2016 Dec 1;167(6):1598-1609.e10. doi: 10.1016/j.cell.2016.11.012.
5
Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13063-13068. doi: 10.1073/pnas.1613701113. Epub 2016 Oct 31.
6
Developmental plasticity of mitochondrial function in American alligators, Alligator mississippiensis.
Am J Physiol Regul Integr Comp Physiol. 2016 Dec 1;311(6):R1164-R1172. doi: 10.1152/ajpregu.00107.2016. Epub 2016 Oct 5.
7
Purification of Ovine Respiratory Complex I Results in a Highly Active and Stable Preparation.
J Biol Chem. 2016 Nov 18;291(47):24657-24675. doi: 10.1074/jbc.M116.735142. Epub 2016 Sep 26.
8
Continuous arterial PO2 profiles in unrestrained, undisturbed aquatic turtles during routine behaviors.
J Exp Biol. 2016 Nov 15;219(Pt 22):3616-3625. doi: 10.1242/jeb.141010. Epub 2016 Sep 12.
9
In situ cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles.
J Exp Biol. 2016 Jul 15;219(Pt 14):2220-7. doi: 10.1242/jeb.139543. Epub 2016 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验