Department of Biology, Aarhus University, Aarhus, Denmark.
Acta Physiol (Oxf). 2022 Jul;235(3):e13841. doi: 10.1111/apha.13841. Epub 2022 May 19.
Hypoxic environments pose a severe challenge to vertebrates and even short periods of oxygen deprivation are often lethal as they constrain aerobic ATP production. However, a few ectotherm vertebrates are capable of surviving long-term hypoxia or even anoxia with little or no damage. Among these, freshwater turtles and crucian carp are the recognized champions of anoxia tolerance, capable of overwintering in complete oxygen deprivation for months at freezing temperatures by entering a stable hypometabolic state. While all steps of the oxygen cascade are adjusted in response to oxygen deprivation, this review draws from knowledge of freshwater turtles and crucian carp to highlight mechanisms regulating two of these steps, namely oxygen transport in the blood and oxygen utilization in mitochondria during three sequential phases: before anoxia, when hypoxia develops, during anoxia, and after anoxia at reoxygenation. In cold hypoxia, reduced red blood cell concentration of ATP plays a crucial role in increasing blood oxygen affinity and/or reducing oxygen unloading to tissues, to adjust aerobic metabolism to decrease ambient oxygen. In anoxia, metabolic rewiring of oxygen utilization keeps largely unaltered NADH/NAD ratios and limits ADP degradation and succinate buildup. These critical adjustments make it possible to restart mitochondrial respiration and energy production with little generation of reactive oxygen species at reoxygenation when oxygen is again available. Inhibition of key metabolic enzymes seems to play crucial roles in these responses, in particular mitochondrial complex V, although identifying the nature of such inhibition(s) in vivo remains a challenge for future studies.
缺氧环境对脊椎动物构成了严重的挑战,即使是短暂的缺氧也常常是致命的,因为它会限制有氧 ATP 的产生。然而,有一些变温脊椎动物能够在长期缺氧甚至无氧的情况下生存,几乎没有或没有任何损伤。在这些动物中,淡水龟和鲫鱼是公认的耐缺氧冠军,它们能够在冰冻温度下通过进入稳定的低代谢状态,在完全缺氧的情况下越冬数月。虽然氧气级联的所有步骤都在缺氧时进行了调整,但本综述借鉴了淡水龟和鲫鱼的知识,重点介绍了调节其中两个步骤的机制,即在血液中的氧气运输和在线粒体中的氧气利用,在三个连续的阶段:缺氧前、缺氧时、缺氧后和再氧合时。在寒冷的缺氧环境中,减少红细胞中 ATP 的浓度在增加血液氧气亲和力和/或减少氧气向组织的释放方面起着至关重要的作用,从而调节有氧代谢以降低环境氧气。在缺氧时,氧气利用的代谢重编程保持 NADH/NAD 比例基本不变,并限制 ADP 降解和琥珀酸的积累。这些关键的调整使得在再次供氧时能够以很少产生活性氧的方式重新启动线粒体呼吸和能量产生。在这些反应中,抑制关键代谢酶似乎起着至关重要的作用,特别是线粒体复合物 V,尽管确定体内这种抑制的性质仍然是未来研究的一个挑战。