From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (S.N.).
Circ Res. 2018 Mar 2;122(5):752-773. doi: 10.1161/CIRCRESAHA.117.311081.
Atrial fibrillation (AF) is the most common sustained heart rhythm disorder and is associated with substantial morbidity and mortality. Current treatment options for AF have significant limitations. Basic research has provided information on mechanisms relevant to the management of AF and promises to contribute significantly to future advances, yet many important translational challenges remain. Here, we analyze the therapeutic limitations for which improvement is needed, consider the translational opportunities presented by recent scientific and technological developments, and attempt to look into the future of where these may lead. We first review the limitations of current AF management, with a focus on rhythm control therapy. These include arrhythmia complications, progression to advanced treatment-resistant forms, insufficient effectiveness of available therapeutic options, adverse consequences of therapy, and difficulties in new therapeutic development. The translational challenges in addressing these shortcomings are then addressed, including (1) defining actionable patient-specific arrhythmia mechanisms to enable personalized therapy; (2) identifying and treating key dynamic modulators controlling AF initiation and progression; (3) achieving atrial-restricted targeting of specific molecular arrhythmia mechanisms; and (4) clarifying the response of the substrate to interventions. For each of these, we describe the translational goal and the opportunities created by recent advances in cardiac imaging, computational modeling, rhythm monitoring, ablation technology, and preclinical studies in human samples and animal models. Finally, we consider the prospects for future solutions that might appreciably improve our ability to understand and manage the arrhythmia over the years to come.
心房颤动(AF)是最常见的持续性心律失常,与较高的发病率和死亡率相关。目前 AF 的治疗选择存在明显的局限性。基础研究为 AF 管理相关的机制提供了信息,并有望为未来的进展做出重大贡献,但仍有许多重要的转化挑战存在。在这里,我们分析了需要改进的治疗局限性,考虑了最近科学和技术发展带来的转化机会,并试图展望这些可能带来的未来。我们首先回顾了当前 AF 管理的局限性,重点是节律控制治疗。这些局限性包括心律失常并发症、进展为高级治疗抵抗形式、现有治疗选择的效果不足、治疗的不良后果以及新治疗方法开发的困难。然后,我们探讨了解决这些缺点的转化挑战,包括(1)定义可操作的患者特定心律失常机制,以实现个性化治疗;(2)识别和治疗控制 AF 起始和进展的关键动态调节剂;(3)实现对特定分子心律失常机制的心房受限靶向;(4)阐明基质对干预的反应。对于每一个,我们描述了转化目标和最近在心脏成像、计算建模、节律监测、消融技术以及人类样本和动物模型的临床前研究方面的进展所带来的机会。最后,我们考虑了未来可能显著提高我们在未来多年理解和管理心律失常能力的解决方案的前景。