From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China.
From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
J Biol Chem. 2018 Apr 27;293(17):6470-6481. doi: 10.1074/jbc.RA117.001390. Epub 2018 Mar 1.
Chromatin consists of DNA and histones, and specific histone modifications that determine chromatin structure and activity are regulated by three types of proteins, called writer, reader, and eraser. Histone reader proteins from vertebrates, vertebrate-infecting parasites, and higher plants possess a CW domain, which has been reported to read histone H3 lysine 4 (H3K4). The CW domain of SDG8 (also called ASHH2), a histone H3 lysine 36 methyltransferase, preferentially binds monomethylated H3K4 (H3K4me1), unlike the mammalian CW domain protein, which binds trimethylated H3K4 (H3K4me3). However, the molecular basis of the selective binding by the CW domain of SDG8 (SDG8-CW) remains unclear. Here, we solved the 1.6-Å-resolution structure of SDG8-CW in complex with H3K4me1, which revealed that residues in the C-terminal α-helix of SDG8-CW determine binding specificity for low methylation levels at H3K4. Moreover, substitutions of key residues, specifically Ile-915 and Asn-916, converted SDG8-CW binding preference from H3K4me1 to H3K4me3. Sequence alignment and mutagenesis studies revealed that the CW domain of SDG725, the homolog of SDG8 in rice, shares the same binding preference with SDG8-CW, indicating that preference for low methylated H3K4 by the CW domain of ASHH2 homologs is conserved among higher-order plants. Our findings provide first structural insights into the molecular basis for specific recognition of monomethylated H3K4 by the H3K4me1 reader protein SDG8 from .
染色质由 DNA 和组蛋白组成,决定染色质结构和活性的特定组蛋白修饰由三种类型的蛋白质调节,称为写入器、读取器和橡皮擦。脊椎动物、脊椎动物感染的寄生虫和高等植物的组蛋白读取器蛋白都具有 CW 结构域,据报道,该结构域可以读取组蛋白 H3 赖氨酸 4(H3K4)。组蛋白 H3 赖氨酸 36 甲基转移酶 SDG8(也称为 ASHH2)的 CW 结构域优先结合单甲基化的 H3K4(H3K4me1),与哺乳动物 CW 结构域蛋白不同,后者结合三甲基化的 H3K4(H3K4me3)。然而,SDG8(SDG8-CW)的 CW 结构域选择性结合的分子基础仍不清楚。在这里,我们解析了 SDG8-CW 与 H3K4me1 复合物的 1.6 Å 分辨率结构,结果表明 SDG8-CW 的 C 端α-螺旋中的残基决定了对 H3K4 低甲基化水平的结合特异性。此外,关键残基的取代,特别是 Ile-915 和 Asn-916,将 SDG8-CW 的结合偏好从 H3K4me1 转换为 H3K4me3。序列比对和突变研究表明,SDG8 在水稻中的同源物 SDG725 的 CW 结构域与 SDG8-CW 具有相同的结合偏好,这表明 ASHH2 同源物的 CW 结构域对低甲基化的 H3K4 的偏好在高等植物中是保守的。我们的研究结果提供了第一个结构见解,阐明了 H3K4me1 读取蛋白 SDG8 特异性识别单甲基化 H3K4 的分子基础。