Hoffmann Anais R F, Saravanan Manikam Sadasivam, Lequin Olivier, Killian J Antoinette, Khemtemourian Lucie
Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France.
Department of Chemistry, Faculty of Science, Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Padualaan 8, 3584 Utrecht, The Netherlands.
Biochim Biophys Acta Biomembr. 2018 Sep;1860(9):1783-1792. doi: 10.1016/j.bbamem.2018.02.018. Epub 2018 Feb 27.
Amyloid fibril formation has been implicated in a wide range of human diseases and the interactions of amyloidogenic proteins with cell membranes are considered to be important in the aetiology of these pathologies. In type 2 diabetes mellitus (T2DM), the human islet amyloid polypeptide (hIAPP) forms amyloid fibrils which impair the functionality and viability of pancreatic β cells. The mechanisms of hIAPP cytotoxicity are linked to the ability of the peptide to self-aggregate and to interact with membranes. Previous studies have shown that the N-terminal part of hIAPP from residues 1 to 19 is the membrane binding domain. The non-amyloidogenic and nontoxic mouse IAPP differs from hIAPP by six residues out of 37, among which a single one, residue 18, lies in the membrane binding region. To gain more insight into hIAPP-membrane interactions we herein performed comprehensive biophysical studies on four analogues (H18R-IAPP, H18K-IAPP, H18E-IAPP and H18A-IAPP). Our data reveal that all peptides are able to insert efficiently in the membrane, indicating that residue 18 is not essential for hIAPP membrane binding and insertion. However, only wild-type hIAPP and H18K-IAPP are able to form fibrils at the membrane. Importantly, all peptides induce membrane damage; wild-type hIAPP and H18K-IAPP presumably cause membrane disruption mainly by fibril growth at the membrane, while for H18R-IAPP, H18E-IAPP and H18A-IAPP, membrane leakage is most likely due to high molecular weight oligomeric species. These results highlight the importance of the residue at position 18 in IAPP for modulating fibril formation at the membrane and the mechanisms of membrane leakage.
淀粉样纤维的形成与多种人类疾病有关,淀粉样蛋白生成蛋白与细胞膜的相互作用被认为在这些疾病的病因学中起着重要作用。在2型糖尿病(T2DM)中,人胰岛淀粉样多肽(hIAPP)形成淀粉样纤维,损害胰腺β细胞的功能和活力。hIAPP细胞毒性的机制与该肽的自我聚集能力以及与膜的相互作用有关。先前的研究表明,hIAPP第1至19位残基的N末端部分是膜结合结构域。非淀粉样生成且无毒的小鼠IAPP与hIAPP在37个残基中有6个不同,其中只有一个残基18位于膜结合区域。为了更深入地了解hIAPP与膜的相互作用,我们在此对四种类似物(H18R-IAPP、H18K-IAPP、H18E-IAPP和H18A-IAPP)进行了全面的生物物理研究。我们的数据表明,所有肽都能够有效地插入膜中,这表明残基18对于hIAPP的膜结合和插入不是必需的。然而,只有野生型hIAPP和H18K-IAPP能够在膜上形成纤维。重要的是,所有肽都会诱导膜损伤;野生型hIAPP和H18K-IAPP可能主要通过膜上的纤维生长导致膜破坏,而对于H18R-IAPP、H18E-IAPP和H18A-IAPP,膜泄漏很可能是由于高分子量寡聚体。这些结果突出了IAPP中第18位残基在调节膜上纤维形成和膜泄漏机制方面的重要性。