Department of Medicine, Stony Brook University, Stony Brook, NY 11794, U.S.A.
Department of Medicine and the Stony Brook Stem Cell Facility, Stony Brook University School of Medicine, Stony Brook, NY 11794-6044, U.S.A.
Biochem J. 2018 Mar 29;475(6):1211-1223. doi: 10.1042/BCJ20180016.
Bioenergetic requirements of hematopoietic stem cells and pluripotent stem cells (PSCs) vary with lineage fate, and cellular adaptations rely largely on substrate (glucose/glutamine) availability and mitochondrial function to balance tricarboxylic acid (TCA)-derived anabolic and redox-regulated antioxidant functions. Heme synthesis and degradation converge in a linear pathway that utilizes TCA cycle-derived carbon in cataplerotic reactions of tetrapyrrole biosynthesis, terminated by NAD(P)H-dependent biliverdin reductases (IXα, BLVRA and IXβ, BLVRB) that lead to bilirubin generation and cellular antioxidant functions. We now demonstrate that PSCs with targeted deletion of display physiologically defective antioxidant activity and cellular viability, associated with a glutamine-restricted defect in TCA entry that was computationally predicted using gene/metabolite topological network analysis and subsequently validated by bioenergetic and isotopomeric studies. Defective BLVRB-regulated glutamine utilization was accompanied by exaggerated glycolytic accumulation of the rate-limiting hexokinase reaction product glucose-6-phosphate. -deficient embryoid body formation (a critical size parameter of early lineage fate potential) demonstrated enhanced sensitivity to the pentose phosphate pathway (PPP) inhibitor 6-aminonicotinamide with no differences in the glycolytic pathway inhibitor 2-deoxyglucose. These collective data place heme catabolism in a crucial pathway of glutamine-regulated bioenergetic metabolism and suggest that early stages of lineage fate potential require glutamine anaplerotic functions and an intact PPP, which are, in part, regulated by BLVRB activity. In principle, BLVRB inhibition represents an alternative strategy for modulating cellular glutamine utilization with consequences for cancer and hematopoietic metabolism.
造血干细胞和多能干细胞(PSCs)的生物能量需求随谱系命运而变化,细胞适应性在很大程度上依赖于底物(葡萄糖/谷氨酰胺)的可用性和线粒体功能,以平衡三羧酸(TCA)衍生的合成代谢和氧化还原调节的抗氧化功能。血红素合成和降解在一条线性途径中收敛,该途径利用 TCA 循环衍生的碳在四吡咯生物合成的脱羧反应中,由 NAD(P)H 依赖性胆红素还原酶(IXα、BLVRA 和 IXβ、BLVRB)终止,导致胆红素生成和细胞抗氧化功能。我们现在证明,靶向缺失的 PSCs 表现出生理上有缺陷的抗氧化活性和细胞活力,与 TCA 进入的谷氨酰胺限制缺陷相关,该缺陷是使用基因/代谢物拓扑网络分析计算预测的,并随后通过生物能量和同位素研究进行了验证。BLVRB 调节的谷氨酰胺利用缺陷伴随着糖酵解限速酶己糖激酶反应产物葡萄糖-6-磷酸的过度积累。-缺陷的胚状体形成(早期谱系命运潜力的关键大小参数)表现出对戊糖磷酸途径(PPP)抑制剂 6-氨基烟酰胺的敏感性增加,而对糖酵解途径抑制剂 2-脱氧葡萄糖没有差异。这些综合数据将血红素分解代谢置于谷氨酰胺调节生物能量代谢的关键途径中,并表明谱系命运潜力的早期阶段需要谷氨酰胺氨同化功能和完整的 PPP,部分受 BLVRB 活性调节。原则上,BLVRB 抑制代表了一种调节细胞谷氨酰胺利用的替代策略,对癌症和造血代谢有影响。