Suppr超能文献

鸡胚颅神经嵴细胞通过渐进性极性细化而非运动接触抑制来引导其迁移。

Chick cranial neural crest cells use progressive polarity refinement, not contact inhibition of locomotion, to guide their migration.

作者信息

Genuth Miriam A, Allen Christopher D C, Mikawa Takashi, Weiner Orion D

机构信息

Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States.

Cardiovascular Research Institute and Sandler Asthma Basic Research Center, Department of Anatomy, University of California San Francisco, United States.

出版信息

Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S252-S261. doi: 10.1016/j.ydbio.2018.02.016. Epub 2018 Mar 6.

Abstract

To move directionally, cells can bias the generation of protrusions or select among randomly generated protrusions. Here we use 3D two-photon imaging of chick branchial arch 2 directed neural crest cells to probe how these mechanisms contribute to directed movement, whether a subset or the majority of cells polarize during movement, and how the different classes of protrusions relate to one another. We find that, in contrast to Xenopus, cells throughout the stream are morphologically polarized along the direction of overall stream movement and do not exhibit contact inhibition of locomotion. Instead chick neural crest cells display a progressive sharpening of the morphological polarity program. Neural crest cells have weak spatial biases in filopodia generation and lifetime. Local bursts of filopodial generation precede the generation of larger protrusions. These larger protrusions are more spatially biased than the filopodia, and the subset of protrusions that are productive for motility are the most polarized of all. Orientation rather than position is the best correlate of the protrusions that are selected for cell guidance. This progressive polarity refinement strategy may enable neural crest cells to efficiently explore their environment and migrate accurately in the face of noisy guidance cues.

摘要

为了定向移动,细胞可以使突起的生成产生偏向,或者在随机生成的突起中进行选择。在这里,我们使用三维双光子成像技术对鸡胚第二鳃弓定向神经嵴细胞进行研究,以探究这些机制如何促成定向移动,移动过程中是一部分细胞还是大多数细胞发生极化,以及不同类型的突起之间是如何相互关联的。我们发现,与非洲爪蟾不同,整个细胞流中的细胞在形态上沿细胞流总体移动方向发生极化,并且不表现出运动接触抑制。相反,鸡胚神经嵴细胞表现出形态极化程序的逐渐强化。神经嵴细胞在丝状伪足的生成和寿命方面具有较弱的空间偏向性。丝状伪足生成的局部爆发先于较大突起的生成。这些较大的突起在空间上比丝状伪足更具偏向性,并且对运动有贡献的突起子集中,所有突起中最极化的就是这些突起。对于细胞导向而言,突起被选择的最佳关联因素是方向而非位置。这种逐渐强化的极化策略可能使神经嵴细胞能够有效地探索其环境,并在面对嘈杂的导向线索时准确迁移。

相似文献

1
Chick cranial neural crest cells use progressive polarity refinement, not contact inhibition of locomotion, to guide their migration.
Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S252-S261. doi: 10.1016/j.ydbio.2018.02.016. Epub 2018 Mar 6.
2
Neural crest cells bulldoze through the microenvironment using Aquaporin 1 to stabilize filopodia.
Development. 2020 Jan 9;147(1):dev185231. doi: 10.1242/dev.185231.
3
The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration.
Biochem J. 2014 Jan 1;457(1):19-26. doi: 10.1042/BJ20131182.
5
Contact inhibition of locomotion in vivo controls neural crest directional migration.
Nature. 2008 Dec 18;456(7224):957-61. doi: 10.1038/nature07441. Epub 2008 Dec 10.
6
Ric-8A, a GEF for heterotrimeric G-proteins, controls cranial neural crest cell polarity during migration.
Mech Dev. 2018 Dec;154:170-178. doi: 10.1016/j.mod.2018.07.004. Epub 2018 Jul 31.
7
Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo.
Development. 1991 Dec;113(4):1281-91. doi: 10.1242/dev.113.4.1281.
8
Cadherin-11 mediates contact inhibition of locomotion during Xenopus neural crest cell migration.
PLoS One. 2013 Dec 31;8(12):e85717. doi: 10.1371/journal.pone.0085717. eCollection 2013.
9
Temporal restriction of migratory and lineage potential in rhombomere 1 and 2 neural crest.
Dev Biol. 2003 Mar 1;255(1):62-76. doi: 10.1016/s0012-1606(02)00076-3.
10
Draxin, an axon guidance protein, affects chick trunk neural crest migration.
Dev Growth Differ. 2009 Dec;51(9):787-96. doi: 10.1111/j.1440-169X.2009.01137.x. Epub 2009 Oct 12.

引用本文的文献

1
Filopodia numbers impact chemotactic migration speed.
bioRxiv. 2025 May 29:2025.05.28.656686. doi: 10.1101/2025.05.28.656686.
2
Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.
Front Cell Dev Biol. 2025 Jan 6;12:1457506. doi: 10.3389/fcell.2024.1457506. eCollection 2024.
3
Visualization of Actin Cytoskeleton in Cellular Protrusions in Medaka Embryos.
Bio Protoc. 2023 Jul 5;13(13):e4710. doi: 10.21769/BioProtoc.4710.
5
Chick cranial neural crest cells release extracellular vesicles that are critical for their migration.
J Cell Sci. 2022 Jun 15;135(12). doi: 10.1242/jcs.260272. Epub 2022 Jun 28.
6
The WAVE complex associates with sites of saddle membrane curvature.
J Cell Biol. 2021 Aug 2;220(8). doi: 10.1083/jcb.202003086. Epub 2021 Jun 7.
7
Craniofacial Development: Neural Crest in Molecular Embryology.
Head Neck Pathol. 2021 Mar;15(1):1-15. doi: 10.1007/s12105-021-01301-z. Epub 2021 Mar 15.
9
Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest.
Curr Opin Cell Biol. 2020 Oct;66:43-50. doi: 10.1016/j.ceb.2020.05.001. Epub 2020 Jun 9.
10
The road best traveled: Neural crest migration upon the extracellular matrix.
Semin Cell Dev Biol. 2020 Apr;100:177-185. doi: 10.1016/j.semcdb.2019.10.013. Epub 2019 Nov 11.

本文引用的文献

1
Excitable Signal Transduction Networks in Directed Cell Migration.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:103-125. doi: 10.1146/annurev-cellbio-100616-060739. Epub 2017 Aug 9.
2
Dendritic Cells Interpret Haptotactic Chemokine Gradients in a Manner Governed by Signal-to-Noise Ratio and Dependent on GRK6.
Curr Biol. 2017 May 8;27(9):1314-1325. doi: 10.1016/j.cub.2017.04.004. Epub 2017 Apr 27.
3
Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes.
Nat Cell Biol. 2016 Nov;18(11):1253-1259. doi: 10.1038/ncb3426. Epub 2016 Oct 24.
4
In vivo confinement promotes collective migration of neural crest cells.
J Cell Biol. 2016 Jun 6;213(5):543-55. doi: 10.1083/jcb.201602083. Epub 2016 May 30.
5
Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.
Cell Rep. 2016 May 31;15(9):2076-88. doi: 10.1016/j.celrep.2016.04.067. Epub 2016 May 19.
6
VEGF signals induce trailblazer cell identity that drives neural crest migration.
Dev Biol. 2015 Nov 1;407(1):12-25. doi: 10.1016/j.ydbio.2015.08.011. Epub 2015 Aug 13.
7
Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces.
Dev Cell. 2015 Aug 24;34(4):421-34. doi: 10.1016/j.devcel.2015.06.012. Epub 2015 Jul 30.
8
Filopodia in cell adhesion, 3D migration and cancer cell invasion.
Curr Opin Cell Biol. 2015 Oct;36:23-31. doi: 10.1016/j.ceb.2015.06.007. Epub 2015 Jul 14.
10
Vangl-dependent planar cell polarity signalling is not required for neural crest migration in mammals.
Development. 2014 Aug;141(16):3153-8. doi: 10.1242/dev.111427. Epub 2014 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验