Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI, 53706, USA.
Biol Trace Elem Res. 2018 Nov;186(1):174-184. doi: 10.1007/s12011-018-1281-6. Epub 2018 Mar 3.
Glutathione peroxidase (Gpx1) is the major selenoprotein in most tissues in animals. Knockout (KO) of Gpx1 decreases Gpx1 activity to near zero and substantially reduces liver selenium (Se) levels, but has no overt effects in otherwise healthy mice. To investigate the impact of deletion of Gpx1 on Se metabolism, Se flux, and apparent Se requirements, KO, Gpx1 heterozygous (Het), and Gpx1 wild-type (WT) mice were fed Se-deficient diet for 17 weeks, then repleted with graded levels of Se (0-0.3 μg Se/g as NaSeO) for 7 days, and selenoprotein activities and transcripts were determined in blood, liver, and kidney. Se deficiency decreased the activities of plasma Gpx3, liver Gpx1, liver Txnrd, and liver Gpx4 to 3, 0.3, 11, and 50% of WT Se-adequate levels, respectively, but the Gpx1 genotype had no effect on growth or changes in activity or expression of selenoproteins other than Gpx1. Se repletion increased selenoprotein transcripts to Se-adequate levels after 7 days; Se response curves and apparent Se requirements for selenoprotein transcripts were similar to those observed in studies starting with Se-adequate mice. With short-term Se repletion, selenoenzyme activities resulted in three Se response curve patterns: (1) liver and kidney Gpx1, Gpx4, and Txnrd activities were sigmoidal or hyperbolic with breakpoints (0.08-0.19 μg Se/g) that were double those observed in studies starting with Se-adequate mice; (2) red blood cell Gpx1 activity was not significantly changed; and (3) plasma Gpx3 activity only increased substantially with 0.3 μg Se/g. Plasma Gpx3 is secreted from kidney. In this short-term study, kidney Gpx3 mRNA reached plateau levels at 0.1 μg Se/g, and other kidney selenoenzyme activities reached plateau levels at ≤ 0.2 μg Se/g, so sufficient Se should have been present in kidney. Thus, the delayed increase in plasma Gpx3 activity suggests that newly synthesized and secreted kidney Gpx3 is preferentially retained in kidney or rapidly cleared by binding to basement membranes in kidney or in other tissues. This repletion study shows that loss of capacity to incorporate Se into Gpx1 in Gpx1 KO mice does not dramatically alter expression of other Se biomarkers, nor the short-term flux of Se from intestine to liver to kidney.
谷胱甘肽过氧化物酶 1(Gpx1)是动物大多数组织中的主要硒蛋白。Gpx1 基因敲除(KO)会使 Gpx1 活性降至接近零,并显著降低肝脏硒(Se)水平,但在其他健康小鼠中没有明显影响。为了研究 Gpx1 缺失对 Se 代谢、Se 通量和表观 Se 需要量的影响,用 Se 缺乏饮食喂养 KO、Gpx1 杂合子(Het)和 Gpx1 野生型(WT)小鼠 17 周,然后用梯度 Se (0-0.3μg Se/g 作为 NaSeO)再喂养 7 天,并测定血液、肝脏和肾脏中的硒蛋白活性和转录本。Se 缺乏使血浆 Gpx3、肝脏 Gpx1、肝脏 Txnrd 和肝脏 Gpx4 的活性分别降至 WT 硒充足水平的 3%、0.3%、11%和 50%,但 Gpx1 基因型对生长或除 Gpx1 以外的其他硒蛋白的活性或表达变化没有影响。7 天后,Se 再补充使硒蛋白转录本增加到硒充足水平;硒反应曲线和硒蛋白转录本的表观 Se 需要量与从硒充足小鼠开始的研究中观察到的相似。在短期 Se 补充时,硒酶活性导致三种 Se 反应曲线模式:(1)肝脏和肾脏的 Gpx1、Gpx4 和 Txnrd 活性呈 S 型或双曲线型,拐点(0.08-0.19μg Se/g)是从硒充足小鼠开始的研究中观察到的两倍;(2)红细胞 Gpx1 活性没有显著变化;(3)仅在 0.3μg Se/g 时血浆 Gpx3 活性显著增加。血浆 Gpx3 从肾脏分泌。在这项短期研究中,肾脏 Gpx3 mRNA 在 0.1μg Se/g 时达到平台水平,其他肾脏硒酶活性在≤0.2μg Se/g 时达到平台水平,因此肾脏中应该有足够的 Se。因此,血浆 Gpx3 活性的延迟增加表明,新合成并分泌的肾脏 Gpx3 优先保留在肾脏中,或通过与肾脏或其他组织中的基膜结合而迅速清除。这项补充研究表明,Gpx1 KO 小鼠中丧失将 Se 掺入 Gpx1 的能力不会显著改变其他 Se 生物标志物的表达,也不会显著改变 Se 从肠道到肝脏到肾脏的短期通量。