Suppr超能文献

微环 Sleeping Beauty 转座子载体高效非病毒基因转导入人造血干细胞。

Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors.

机构信息

Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.

Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain.

出版信息

Mol Ther. 2018 Apr 4;26(4):1137-1153. doi: 10.1016/j.ymthe.2018.01.012. Epub 2018 Jan 31.

Abstract

The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34 cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34 cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34 cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4-8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.

摘要

沉睡美人(SB)转座子系统是一种非病毒基因传递平台,在人类应用中结合了简单性、廉价制造和有利的安全性特征。然而,包括 SB 在内的非病毒载体系统对造血干细胞和祖细胞(HSPC)的有效纠正需要进一步改进基因传递技术。我们着手通过将 SB 系统组件载体化为无质粒骨架序列的微小环来改善难以转染的人类 CD34 细胞中的 SB 基因转移,因此微小环的尺寸显著减小。与传统质粒相比,将 SB 转座子系统作为微小环 DNA 进行传递的效率提高了约 20 倍,并且与人 CD34 细胞的细胞毒性降低了 50%。此外,以合成 mRNA 的形式提供 SB 转座酶使我们能够进一步提高基因在造血祖细胞体外稳定传递的功效和生物安全性。全基因组插入位点分析显示 SB 转座子整合子的分布接近随机,这与 HSPC 中的γ逆转录病毒和慢病毒整合明显不同。将基因标记的 CD34 细胞移植到免疫缺陷小鼠中导致长期植入和造血重建,当 SB 转座酶作为 mRNA 提供并且核转染细胞在移植前在培养中维持 4-8 天时效率最高。总的来说,微小环和 mRNA 技术的实施使我们能够进一步改进 SB 转座子系统在 HSPC 基因传递中的应用,最终满足高效和安全的非病毒基因治疗方案的临床需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验