Suppr超能文献

新型 RNA 亲和蛋白质基因组学剖析肿瘤异质性,揭示癌症精准预后中的个体化标志物。

Novel RNA-Affinity Proteogenomics Dissects Tumor Heterogeneity for Revealing Personalized Markers in Precision Prognosis of Cancer.

机构信息

Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry & Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.

Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Cell Chem Biol. 2018 May 17;25(5):619-633.e5. doi: 10.1016/j.chembiol.2018.01.016. Epub 2018 Mar 1.

Abstract

To discriminate the patient subpopulations with different clinical outcomes within each breast cancer (BC) subtype, we introduce a robust, clinical-practical, activity-based proteogenomic method that identifies, in their oncogenically active states, candidate biomarker genes bearing patient-specific transcriptomic/genomic alterations of prognostic value. First, we used the intronic splicing enhancer (ISE) probes to sort ISE-interacting trans-acting protein factors (trans-interactome) directly from a tumor tissue for subsequent mass spectrometry characterization. In the retrospective, proteogenomic analysis of patient datasets, we identified those ISE trans-factor-encoding genes showing interaction-correlated expression patterns (iCEPs) as new BC-subtypic genes. Further, patient-specific co-alterations in mRNA expression of select iCEP genes distinguished high-risk patient subsets/subpopulations from other patients within a single BC subtype. Function analysis further validated a tumor-phenotypic trans-interactome contained the drivers of oncogenic splicing switches, representing the predominant tumor cells in a tissue, from which novel personalized biomarkers were clinically characterized/validated for precise prognostic prediction and subsequent individualized alignment of optimal therapy.

摘要

为了在每个乳腺癌(BC)亚型内区分具有不同临床结局的患者亚群,我们引入了一种强大的、临床实用的、基于活性的蛋白质基因组学方法,该方法可以识别在致癌活性状态下具有预后价值的候选生物标志物基因,这些基因带有患者特异性的转录组/基因组改变。首先,我们使用内含子剪接增强子(ISE)探针从肿瘤组织中直接对 ISE 相互作用的反式作用蛋白因子(反相互作用组)进行排序,以便随后进行质谱表征。在回顾性的、基于蛋白质基因组学的患者数据集分析中,我们鉴定了那些显示相互作用相关表达模式(iCEP)的 ISE 反式因子编码基因作为新的 BC 亚型基因。此外,选择的 iCEP 基因的 mRNA 表达的患者特异性共改变将高风险患者亚组/亚群与单个 BC 亚型中的其他患者区分开来。功能分析进一步验证了肿瘤表型反相互作用组包含致癌剪接开关的驱动因素,这些驱动因素代表了组织中的主要肿瘤细胞,从中提取出了新的个性化生物标志物,并对其进行了临床特征描述/验证,以进行精确的预后预测,并随后对最佳治疗方案进行个体化调整。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验