Suppr超能文献

使用流变学和共聚焦显微镜表征毛细血管悬浮液结构的分形方法。

Fractal approaches to characterize the structure of capillary suspensions using rheology and confocal microscopy.

作者信息

Bossler Frank, Maurath Johannes, Dyhr Katrin, Willenbacher Norbert, Koos Erin

机构信息

Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany.

KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium.

出版信息

J Rheol (N Y N Y). 2018 Jan;62(1):183-196. doi: 10.1122/1.4997889.

Abstract

The rheological properties of a particle suspension can be substantially altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The drastic change in the strength of these capillary suspensions arises due to the capillary forces, induced by the added liquid, leading to a percolating particle network. Using rheological scaling models, fractal dimensions are deduced from the yield stress and from oscillatory strain amplitude sweep data as function of the solid volume fraction. Exponents obtained using aluminum-oxide-based capillary suspensions, with a preferentially wetting secondary fluid, indicate an increase in the particle gel's fractal dimension with increasing particle size. This may be explained by a corresponding relative reduction in the capillary force compared to other forces. Confocal images using a glass model system show the microstructure to consist of compact particle flocs interconnected by a sparse backbone. Thus, using the rheological models two different fractal dimensionalities are distinguished - a lower network backbone dimension ( = 1.86-2.05) and an intrafloc dimension ( = 2.57-2.74). The latter is higher due to the higher local solid volume fraction inside of the flocs compared to the sparse backbone. Both of these dimensions are compared with values obtained by analysis of spatial particle positions from 3D confocal microscopy images, where dimensions between 2.43 and 2.63 are computed, lying between the two dimension ranges obtained from rheology. The fractal dimensions determined via this method corroborate the increase in structural compactness with increasing particle size.

摘要

通过添加少量与主体相不混溶的第二流体,颗粒悬浮液的流变特性会发生显著改变。这些毛细管悬浮液强度的急剧变化是由添加液体引起的毛细管力导致的,从而形成渗流颗粒网络。使用流变标度模型,根据屈服应力和作为固体体积分数函数的振荡应变幅度扫描数据推导出分形维数。使用基于氧化铝的毛细管悬浮液(具有优先润湿的第二流体)获得的指数表明,颗粒凝胶的分形维数随颗粒尺寸的增加而增加。这可以通过与其他力相比毛细管力相应的相对降低来解释。使用玻璃模型系统的共聚焦图像显示微观结构由通过稀疏骨架相互连接的紧密颗粒絮凝物组成。因此,使用流变模型可以区分两种不同的分形维数——较低的网络骨架维数(= 1.86 - 2.05)和絮凝物内维数(= 2.57 - 2.74)。由于絮凝物内部的局部固体体积分数高于稀疏骨架,后者更高。将这两个维数与通过分析三维共聚焦显微镜图像中的空间颗粒位置获得的值进行比较,计算得到的维数在2.43和2.63之间,介于从流变学获得的两个维数范围之间。通过这种方法确定的分形维数证实了结构紧凑性随颗粒尺寸增加而增加。

相似文献

3
Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids.
Langmuir. 2016 Feb 16;32(6):1489-501. doi: 10.1021/acs.langmuir.5b04246. Epub 2016 Feb 4.
4
Influence of mixing conditions on the rheological properties and structure of capillary suspensions.
Colloids Surf A Physicochem Eng Asp. 2017 Apr 5;518:85-97. doi: 10.1016/j.colsurfa.2017.01.026.
5
Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
Adv Colloid Interface Sci. 2018 Jan;251:80-96. doi: 10.1016/j.cis.2017.11.004. Epub 2017 Nov 21.
6
Enhanced contact flexibility from nanoparticles in capillary suspensions.
J Colloid Interface Sci. 2024 Jul;665:643-654. doi: 10.1016/j.jcis.2024.03.103. Epub 2024 Mar 24.
7
Tunable Capillary Suspensions from Aqueous Two-Phase Systems.
Langmuir. 2025 May 13;41(18):11604-11613. doi: 10.1021/acs.langmuir.5c00749. Epub 2025 Apr 28.
8
How bulk liquid viscosity shapes capillary suspensions.
J Colloid Interface Sci. 2025 Jan 15;678(Pt B):400-409. doi: 10.1016/j.jcis.2024.09.021. Epub 2024 Sep 5.
10
Anomalous variations in the viscous activation energy of suspensions induced by fractal structuring.
J Colloid Interface Sci. 2018 Nov 15;530:603-609. doi: 10.1016/j.jcis.2018.07.008. Epub 2018 Jul 4.

引用本文的文献

2
Tunable Capillary Suspensions from Aqueous Two-Phase Systems.
Langmuir. 2025 May 13;41(18):11604-11613. doi: 10.1021/acs.langmuir.5c00749. Epub 2025 Apr 28.
3
Dewetting Fingering Instability in Capillary Suspensions: Role of Particles and Liquid Bridges.
Langmuir. 2025 Mar 4;41(8):5399-5409. doi: 10.1021/acs.langmuir.4c04939. Epub 2025 Feb 20.
4
A holistic view on the role of egg yolk in Old Masters' oil paints.
Nat Commun. 2023 Mar 28;14(1):1534. doi: 10.1038/s41467-023-36859-5.
5
Lightweight Porous Glass Composite Materials Based on Capillary Suspensions.
Materials (Basel). 2019 Feb 19;12(4):619. doi: 10.3390/ma12040619.
6
Structure of capillary suspensions and their versatile applications in the creation of smart materials.
MRS Commun. 2018 Jun;8(2):332-342. doi: 10.1557/mrc.2018.28. Epub 2018 Mar 8.

本文引用的文献

2
3D Printing by Multiphase Silicone/Water Capillary Inks.
Adv Mater. 2017 Aug;29(30). doi: 10.1002/adma.201701554. Epub 2017 Jun 7.
3
Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces.
ACS Appl Mater Interfaces. 2017 Mar 29;9(12):11095-11105. doi: 10.1021/acsami.6b13624. Epub 2017 Mar 14.
4
Influence of mixing conditions on the rheological properties and structure of capillary suspensions.
Colloids Surf A Physicochem Eng Asp. 2017 Apr 5;518:85-97. doi: 10.1016/j.colsurfa.2017.01.026.
5
Highly conductive, printable pastes from capillary suspensions.
Sci Rep. 2016 Aug 10;6:31367. doi: 10.1038/srep31367.
6
Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids.
Langmuir. 2016 Feb 16;32(6):1489-501. doi: 10.1021/acs.langmuir.5b04246. Epub 2016 Feb 4.
7
Tailoring flow behavior and texture of water based cocoa suspensions.
Food Hydrocoll. 2015 Jun 23;52:167-174. doi: 10.1016/j.foodhyd.2015.06.010.
8
Highly Porous Materials with Unique Mechanical Properties from Smart Capillary Suspensions.
Adv Mater. 2016 Feb 24;28(8):1689-96. doi: 10.1002/adma.201504910. Epub 2015 Dec 16.
9
A non-equilibrium state diagram for liquid/fluid/particle mixtures.
Soft Matter. 2015 Nov 21;11(43):8393-403. doi: 10.1039/c5sm01901j.
10
Capillary suspensions: Particle networks formed through the capillary force.
Curr Opin Colloid Interface Sci. 2014 Dec 1;19(6):575-584. doi: 10.1016/j.cocis.2014.10.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验