Bossler Frank, Maurath Johannes, Dyhr Katrin, Willenbacher Norbert, Koos Erin
Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany.
KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium.
J Rheol (N Y N Y). 2018 Jan;62(1):183-196. doi: 10.1122/1.4997889.
The rheological properties of a particle suspension can be substantially altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The drastic change in the strength of these capillary suspensions arises due to the capillary forces, induced by the added liquid, leading to a percolating particle network. Using rheological scaling models, fractal dimensions are deduced from the yield stress and from oscillatory strain amplitude sweep data as function of the solid volume fraction. Exponents obtained using aluminum-oxide-based capillary suspensions, with a preferentially wetting secondary fluid, indicate an increase in the particle gel's fractal dimension with increasing particle size. This may be explained by a corresponding relative reduction in the capillary force compared to other forces. Confocal images using a glass model system show the microstructure to consist of compact particle flocs interconnected by a sparse backbone. Thus, using the rheological models two different fractal dimensionalities are distinguished - a lower network backbone dimension ( = 1.86-2.05) and an intrafloc dimension ( = 2.57-2.74). The latter is higher due to the higher local solid volume fraction inside of the flocs compared to the sparse backbone. Both of these dimensions are compared with values obtained by analysis of spatial particle positions from 3D confocal microscopy images, where dimensions between 2.43 and 2.63 are computed, lying between the two dimension ranges obtained from rheology. The fractal dimensions determined via this method corroborate the increase in structural compactness with increasing particle size.
通过添加少量与主体相不混溶的第二流体,颗粒悬浮液的流变特性会发生显著改变。这些毛细管悬浮液强度的急剧变化是由添加液体引起的毛细管力导致的,从而形成渗流颗粒网络。使用流变标度模型,根据屈服应力和作为固体体积分数函数的振荡应变幅度扫描数据推导出分形维数。使用基于氧化铝的毛细管悬浮液(具有优先润湿的第二流体)获得的指数表明,颗粒凝胶的分形维数随颗粒尺寸的增加而增加。这可以通过与其他力相比毛细管力相应的相对降低来解释。使用玻璃模型系统的共聚焦图像显示微观结构由通过稀疏骨架相互连接的紧密颗粒絮凝物组成。因此,使用流变模型可以区分两种不同的分形维数——较低的网络骨架维数(= 1.86 - 2.05)和絮凝物内维数(= 2.57 - 2.74)。由于絮凝物内部的局部固体体积分数高于稀疏骨架,后者更高。将这两个维数与通过分析三维共聚焦显微镜图像中的空间颗粒位置获得的值进行比较,计算得到的维数在2.43和2.63之间,介于从流变学获得的两个维数范围之间。通过这种方法确定的分形维数证实了结构紧凑性随颗粒尺寸增加而增加。