Holdstock Megan, Murray Brent Stuart, Sarkar Anwesha, Paximada Paraskevi, Rappolt Michael, Celigueta Torres Isabel
Food Colloids & Bioprocessing Group, School of Food Science & Nutrition, University of Leeds, LS2 9JT, UK.
National Alternative Protein Innovation Centre (NAPIC), UK.
Soft Matter. 2025 Sep 8. doi: 10.1039/d5sm00596e.
Particles with some degree of hydrophilicity are known to aggregate when directly dispersed in non-aqueous media. Proteins are generally insoluble in oil and have complex surface properties, but they may form networks in oil like more simple colloidal particles, depending on particle size and surface hydrophilicity. Here, the particle size of pea protein isolate (PPI) particles in oil was reduced to submicron sizes by stirred media milling. The rheology of milled PPI oil suspensions was compared to dispersions prepared with two types of colloidal silica particles - hydrophobic and hydrophilic. PPI particles form structured aggregates in oil which break down under shear that, similarly to silica, can form an elastic network like an oleogel system. As PPI size decreased, aggregation increased, shown by higher apparent viscosities and gel strength. PPI particles with an average size of 1 μm exhibited elastic behaviour (' > '') at 11.2 wt%. Rheological scaling models obtained two fractal dimensions: a higher intra-floc dimension and a lower network backbone dimension, suggesting that colloidal PPI and silica particles have an inhomogeneous microstructure with denser particle flocs compared to a relatively sparse backbone. For smaller PPI particles the inter- and intra-floc fractal dimensions become like that of hydrophobic silica, suggesting that the average 'surface' character of the PPI may be close to that of the silica. Therefore despite the complexity of the protein surface, parallels can be drawn with simpler colloidal systems. Pre-wetting the particles with ethanol tuned this behaviour, highlighting the role of surface chemistry in gel formation.
已知具有一定亲水性的颗粒直接分散在非水介质中时会发生聚集。蛋白质通常不溶于油且具有复杂的表面性质,但根据颗粒大小和表面亲水性,它们可能像更简单的胶体颗粒一样在油中形成网络。在此,通过搅拌介质研磨将油中豌豆蛋白分离物(PPI)颗粒的粒径减小至亚微米尺寸。将研磨后的PPI油悬浮液的流变学与用两种类型的胶体二氧化硅颗粒——疏水性和亲水性颗粒制备的分散体进行比较。PPI颗粒在油中形成结构化聚集体,在剪切力作用下会分解,这与二氧化硅类似,二氧化硅可以形成类似油凝胶体系的弹性网络。随着PPI尺寸减小,聚集增加,表现为表观粘度和凝胶强度更高。平均尺寸为1μm的PPI颗粒在11.2 wt%时表现出弹性行为(‘>’‘)。流变缩放模型得到两个分形维数:较高的絮凝体内维数和较低的网络骨架维数,这表明与相对稀疏的骨架相比,胶体PPI和二氧化硅颗粒具有不均匀的微观结构,颗粒絮凝体更致密。对于较小的PPI颗粒,絮凝体间和絮凝体内的分形维数变得与疏水性二氧化硅的分形维数相似,这表明PPI的平均“表面”特征可能与二氧化硅的接近。因此,尽管蛋白质表面复杂,但仍可与更简单的胶体系统进行类比。用乙醇对颗粒进行预润湿可调节这种行为,突出了表面化学在凝胶形成中的作用。