Suppr超能文献

用于制备纳米间隙电极的亚15纳米空间内的受限电化学沉积

Confined Electrochemical Deposition in Sub-15 nm Space for Preparing Nanogap Electrodes.

作者信息

Sadar J, Wang Y, Qing Q

机构信息

Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.

Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

ECS Trans. 2017;77(7):65-72. doi: 10.1149/07707.0065ecst.

Abstract

Electrode gaps with nanoscale separation offer great promise for molecular electronics and biosensing. Previous electrochemical methods to prepare nanogaps by depositing metal on pre-defined electrode tips have suffered from lack of control in the thickness direction and reproducible control of gap size. Here we report a new process wherein the electrochemical deposition is confined by a cavity to produce a nanogap with thickness smaller even than that of the initial electrodes. Using this process, we demonstrate controlled and reversible electrochemical deposition in a sub-15 nm space, to produce a nano-fluidic channel with finely tunable nanogap control electrodes for biosensing applications.

摘要

具有纳米级间距的电极间隙在分子电子学和生物传感方面展现出巨大潜力。以往通过在预定义电极尖端沉积金属来制备纳米间隙的电化学方法,在厚度方向上缺乏控制,且间隙尺寸难以实现可重复控制。在此,我们报告一种新工艺,其中电化学沉积受一个腔体限制,以产生厚度甚至小于初始电极的纳米间隙。利用这一工艺,我们展示了在小于15纳米的空间内进行可控且可逆的电化学沉积,以制造出具有可精细调节纳米间隙控制电极的纳米流体通道,用于生物传感应用。

相似文献

2
Clean electromigrated nanogaps imaged by transmission electron microscopy.
Nano Lett. 2006 Mar;6(3):441-4. doi: 10.1021/nl052302a.
3
Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
ACS Appl Mater Interfaces. 2013 Dec 26;5(24):12869-75. doi: 10.1021/am403115m. Epub 2013 Dec 4.
4
Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
Nano Lett. 2016 Oct 12;16(10):6317-6324. doi: 10.1021/acs.nanolett.6b02690. Epub 2016 Sep 20.
5
Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.
6
Nanogap electrode fabrication for a nanoscale device by volume-expanding electrochemical synthesis.
Small. 2011 Aug 8;7(15):2210-6. doi: 10.1002/smll.201002103. Epub 2011 May 24.
7
Nanoscale biomemory composed of recombinant azurin on a nanogap electrode.
Nanotechnology. 2013 Sep 13;24(36):365301. doi: 10.1088/0957-4484/24/36/365301. Epub 2013 Aug 13.
8
Scalable Manufacturing of Nanogaps.
Adv Mater. 2018 Nov;30(46):e1801124. doi: 10.1002/adma.201801124. Epub 2018 Aug 29.
9
Sub-5 nm nanogap electrodes towards single-molecular biosensing.
Biosens Bioelectron. 2022 Oct 1;213:114486. doi: 10.1016/j.bios.2022.114486. Epub 2022 Jun 16.
10
Sub-10 nm nanogap fabrication on suspended glassy carbon nanofibers.
Microsyst Nanoeng. 2020 Jan 27;6:9. doi: 10.1038/s41378-019-0120-z. eCollection 2020.

本文引用的文献

1
The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules.
Nanotechnology. 2010 Jul 9;21(27):274012. doi: 10.1088/0957-4484/21/27/274012. Epub 2010 Jun 22.
2
Nanogap electrodes.
Adv Mater. 2010 Jan 12;22(2):286-300. doi: 10.1002/adma.200900864.
3
Finely tuning metallic nanogap size with electrodeposition by utilizing high-frequency impedance in feedback.
Angew Chem Int Ed Engl. 2005 Dec 2;44(47):7771-5. doi: 10.1002/anie.200502680.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验