Sadar J, Wang Y, Qing Q
Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.
Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
ECS Trans. 2017;77(7):65-72. doi: 10.1149/07707.0065ecst.
Electrode gaps with nanoscale separation offer great promise for molecular electronics and biosensing. Previous electrochemical methods to prepare nanogaps by depositing metal on pre-defined electrode tips have suffered from lack of control in the thickness direction and reproducible control of gap size. Here we report a new process wherein the electrochemical deposition is confined by a cavity to produce a nanogap with thickness smaller even than that of the initial electrodes. Using this process, we demonstrate controlled and reversible electrochemical deposition in a sub-15 nm space, to produce a nano-fluidic channel with finely tunable nanogap control electrodes for biosensing applications.
具有纳米级间距的电极间隙在分子电子学和生物传感方面展现出巨大潜力。以往通过在预定义电极尖端沉积金属来制备纳米间隙的电化学方法,在厚度方向上缺乏控制,且间隙尺寸难以实现可重复控制。在此,我们报告一种新工艺,其中电化学沉积受一个腔体限制,以产生厚度甚至小于初始电极的纳米间隙。利用这一工艺,我们展示了在小于15纳米的空间内进行可控且可逆的电化学沉积,以制造出具有可精细调节纳米间隙控制电极的纳米流体通道,用于生物传感应用。