Suppr超能文献

测量增材制造中使用的商用光聚合物的紫外线固化参数。

Measuring UV Curing Parameters of Commercial Photopolymers used in Additive Manufacturing.

作者信息

Bennett Joe

机构信息

Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA.

出版信息

Addit Manuf. 2017 Dec;18:203-212. doi: 10.1016/j.addma.2017.10.009. Epub 2017 Oct 9.

Abstract

A testing methodology was developed to expose photopolymer resins and measure the cured material to determine two key parameters related to the photopolymerization process: E (critical energy to initiate polymerization) and D (penetration depth of curing light). Five commercially available resins were evaluated under exposure from 365 nm and 405 nm light at varying power densities and energies. Three different methods for determining the thickness of the cured resin were evaluated. Caliper measurements, stylus profilometry, and confocal laser scanning microscopy showed similar results for hard materials while caliper measurement of a soft, elastomeric material proved inaccurate. Working curves for the five photopolymers showed unique behavior both within and among the resins as a function of curing light wavelength. E and D for the five resins showed variations as large as 10×. Variations of this magnitude, if unknown to the user and not controlled for, will clearly affect printed part quality. This points to the need for a standardized approach for determining and disseminating these, and perhaps, other key parameters.

摘要

开发了一种测试方法,用于照射光聚合树脂并测量固化材料,以确定与光聚合过程相关的两个关键参数:E(引发聚合的临界能量)和D(固化光的穿透深度)。在不同功率密度和能量下,对五种市售树脂进行了365nm和405nm光照射评估。评估了三种确定固化树脂厚度的不同方法。卡尺测量、触针轮廓仪和共聚焦激光扫描显微镜对硬质材料显示出相似的结果,而对软质弹性体材料进行卡尺测量则证明不准确。五种光聚合物的工作曲线显示出树脂内部和树脂之间随固化光波长的独特行为。五种树脂的E和D变化高达10倍。如果用户不知道且未加以控制,这种程度的变化显然会影响打印部件的质量。这表明需要一种标准化方法来确定和传播这些以及其他可能的关键参数。

相似文献

1
Measuring UV Curing Parameters of Commercial Photopolymers used in Additive Manufacturing.
Addit Manuf. 2017 Dec;18:203-212. doi: 10.1016/j.addma.2017.10.009. Epub 2017 Oct 9.
2
Anisotropy of Photopolymer Parts Made by Digital Light Processing.
Materials (Basel). 2017 Jan 13;10(1):64. doi: 10.3390/ma10010064.
3
Additive Manufacturing for Automotive Applications: Mechanical and Weathering Durability of Vat Photopolymerization Materials.
3D Print Addit Manuf. 2021 Oct 1;8(5):302-314. doi: 10.1089/3dp.2020.0244. Epub 2021 Oct 8.
4
Photoinitiators in dentistry: a review.
Prim Dent J. 2013 Oct;2(4):30-3. doi: 10.1308/205016814809859563.
5
Role of GO and Photoinitiator Concentration on Curing Behavior of PEG-Based Polymer for DLP 3D Printing.
ACS Omega. 2024 Jan 8;9(3):3287-3294. doi: 10.1021/acsomega.3c05378. eCollection 2024 Jan 23.
6
A renewably sourced, circular photopolymer resin for additive manufacturing.
Nature. 2024 May;629(8014):1069-1074. doi: 10.1038/s41586-024-07399-9. Epub 2024 May 15.
8
Simple post-curing methods to optimize the depth of cure and physicochemical properties of 3D printed resin.
J Dent. 2025 Jul;158:105785. doi: 10.1016/j.jdent.2025.105785. Epub 2025 Apr 27.
9
Syringe pump extruder and curing system for 3D printing of photopolymers.
HardwareX. 2021 Feb 3;9:e00175. doi: 10.1016/j.ohx.2021.e00175. eCollection 2021 Apr.
10
Are physical and mechanical properties of 3D resins dependent on the manufacturing method?
Odontology. 2025 Apr;113(2):542-548. doi: 10.1007/s10266-024-00985-3. Epub 2024 Aug 13.

引用本文的文献

1
Light-based vat-polymerization bioprinting.
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
2
Lithography-based 3D printing of hydrogels.
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.
3
Step Test for Rapid Screening of Material and Process Parameters for Resin Development in DLP 3D Printing.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202504154. doi: 10.1002/anie.202504154. Epub 2025 Jul 6.
5
Advances in materials and technologies for digital light processing 3D printing.
Nano Converg. 2024 Nov 4;11(1):45. doi: 10.1186/s40580-024-00452-3.
6
Influence of Spectral Bandwidth on the Working Curve in Vat Photopolymerization.
Addit Manuf. 2024 Apr 5;85. doi: 10.1016/j.addma.2024.104172.
7
Growing three-dimensional objects with light.
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2303648121. doi: 10.1073/pnas.2303648121. Epub 2024 Jul 1.
8
Multi-Material 3D Printing of Biobased Epoxy Resins.
Polymers (Basel). 2024 May 27;16(11):1510. doi: 10.3390/polym16111510.
9
Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold.
Ann Biomed Eng. 2024 Aug;52(8):2162-2177. doi: 10.1007/s10439-024-03516-x. Epub 2024 Apr 29.
10
Results of an interlaboratory study on the working curve in vat photopolymerization.
Addit Manuf. 2024 Mar;84. doi: 10.1016/j.addma.2024.104082.

本文引用的文献

1
Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation.
Lab Chip. 2010 Aug 21;10(16):2062-70. doi: 10.1039/c004285d. Epub 2010 Jul 5.
2
Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells.
Ann Biomed Eng. 2006 Sep;34(9):1429-41. doi: 10.1007/s10439-006-9156-y. Epub 2006 Aug 1.
3
Frontal photopolymerization for microfluidic applications.
Langmuir. 2004 Nov 9;20(23):10020-9. doi: 10.1021/la049501e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验