BRCA-Pathway:一个基于 TCGA 乳腺癌数据的 KEGG 通路的结构整合和可视化系统。
BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways.
机构信息
Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Korea.
Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Korea.
出版信息
BMC Bioinformatics. 2018 Feb 19;19(Suppl 1):42. doi: 10.1186/s12859-018-2016-6.
BACKGROUND
Bioinformatics research for finding biological mechanisms can be done by analysis of transcriptome data with pathway based interpretation. Therefore, researchers have tried to develop tools to analyze transcriptome data with pathway based interpretation. Over the years, the amount of omics data has become huge, e.g., TCGA, and the data types to be analyzed have come in many varieties, including mutations, copy number variations, and transcriptome. We also need to consider a complex relationship with regulators of genes, particularly Transcription Factors(TF). However, there has not been a system for pathway based exploration and analysis of TCGA multi-omics data. In this reason, We have developed a web based system BRCA-Pathway to fulfill the need for pathway based analysis of TCGA multi-omics data.
RESULTS
BRCA-Pathway is a structured integration and visual exploration system of TCGA breast cancer data on KEGG pathways. For data integration, a relational database is designed and used to integrate multi-omics data of TCGA-BRCA, KEGG pathway data, Hallmark gene sets, transcription factors, driver genes, and PAM50 subtypes. For data exploration, multi-omics data such as SNV, CNV and gene expression can be visualized simultaneously in KEGG pathway maps, together with transcription factors-target genes (TF-TG) correlation and relationships among cancer driver genes. In addition, 'Pathways summary' and 'Oncoprint' with mutual exclusivity sort can be generated dynamically with a request by the user. Data in BRCA-Pathway can be downloaded by REST API for further analysis.
CONCLUSIONS
BRCA-Pathway helps researchers navigate omics data towards potentially important genes, regulators, and discover complex patterns involving mutations, CNV, and gene expression data of various patient groups in the biological pathway context. In addition, mutually exclusive genomic alteration patterns in a specific pathway can be generated. BRCA-Pathway can provide an integrative perspective on the breast cancer omics data, which can help researchers discover new insights on the biological mechanisms of breast cancer.
背景
通过基于通路的解释分析转录组数据,可以进行寻找生物学机制的生物信息学研究。因此,研究人员尝试开发了用于基于通路解释分析转录组数据的工具。多年来,组学数据的数量变得非常庞大,例如 TCGA,并且要分析的数据类型也多种多样,包括突变、拷贝数变异和转录组。我们还需要考虑与基因调节剂(特别是转录因子)的复杂关系。然而,目前还没有用于 TCGA 多组学数据的基于通路的探索和分析系统。基于此,我们开发了一个基于网络的系统 BRCA-Pathway,以满足 TCGA 多组学数据基于通路分析的需求。
结果
BRCA-Pathway 是一个基于 KEGG 通路的 TCGA 乳腺癌数据的结构化集成和可视化探索系统。为了进行数据集成,设计并使用了一个关系数据库来集成 TCGA-BRCA 的多组学数据、KEGG 通路数据、Hallmark 基因集、转录因子、驱动基因和 PAM50 亚型。为了进行数据探索,可以在 KEGG 通路图中同时可视化 SNV、CNV 和基因表达等多组学数据,以及转录因子-靶基因(TF-TG)相关性和癌症驱动基因之间的关系。此外,用户请求时可以动态生成“通路总结”和“Oncoprint”,并具有互斥排序。BRCA-Pathway 中的数据可以通过 REST API 下载,以进行进一步分析。
结论
BRCA-Pathway 帮助研究人员在生物通路上下文中导航组学数据,以发现潜在重要的基因、调节剂,并发现各种患者群体的突变、CNV 和基因表达数据之间的复杂模式。此外,可以生成特定通路中互斥的基因组改变模式。BRCA-Pathway 可以为乳腺癌组学数据提供综合视角,帮助研究人员发现乳腺癌生物学机制的新见解。
相似文献
BMC Bioinformatics. 2018-2-19
Genes (Basel). 2020-8-4
Nucleic Acids Res. 2020-1-8
BMC Bioinformatics. 2016-2-6
引用本文的文献
PLoS Comput Biol. 2024-5
Medicine (Baltimore). 2023-8-4
BMC Bioinformatics. 2022-11-14
Comput Math Methods Med. 2022
Front Genet. 2020-10-15
Comput Intell Neurosci. 2020-10-29
Cancers (Basel). 2020-9-8
本文引用的文献
Cell Syst. 2015-12-23
Nat Methods. 2016-1
Bioinformatics. 2015-11-14
Bioinformatics. 2015-5-1
Bioinformatics. 2013-6-4
Science. 2013-3-29
Genome Res. 2011-9-9