Suppr超能文献

一种基于通路导向的正向生长恢复检测方法,可促进鲍曼不动杆菌中脂多糖和脂肪酸生物合成抑制剂的发现。

A pathway-directed positive growth restoration assay to facilitate the discovery of lipid A and fatty acid biosynthesis inhibitors in Acinetobacter baumannii.

机构信息

Novartis Institutes for BioMedical Research, Emeryville, CA, United States of America.

出版信息

PLoS One. 2018 Mar 5;13(3):e0193851. doi: 10.1371/journal.pone.0193851. eCollection 2018.

Abstract

Acinetobacter baumannii ATCC 19606 can grow without lipooligosaccharide (LOS). Lack of LOS can result from disruption of the early lipid A biosynthetic pathway genes lpxA, lpxC or lpxD. Although LOS itself is not essential for growth of A. baumannii ATCC 19606, it was previously shown that depletion of the lipid A biosynthetic enzyme LpxK in cells inhibited growth due to the toxic accumulation of lipid A pathway intermediates. Growth of LpxK-depleted cells was restored by chemical inhibition of LOS biosynthesis using CHIR-090 (LpxC) and fatty acid biosynthesis using cerulenin (FabB/F) and pyridopyrimidine (acetyl-CoA-carboxylase). Here, we expand on this by showing that inhibition of enoyl-acyl carrier protein reductase (FabI), responsible for converting trans-2-enoyl-ACP into acyl-ACP during the fatty acid elongation cycle also restored growth during LpxK depletion. Inhibition of fatty acid biosynthesis during LpxK depletion rescued growth at 37°C, but not at 30°C, whereas rescue by LpxC inhibition was temperature independent. We exploited these observations to demonstrate proof of concept for a targeted medium-throughput growth restoration screening assay to identify small molecule inhibitors of LOS and fatty acid biosynthesis. The differential temperature dependence of fatty acid and LpxC inhibition provides a simple means by which to separate growth stimulating compounds by pathway. Targeted cell-based screening platforms such as this are important for faster identification of compounds inhibiting pathways of interest in antibacterial discovery for clinically relevant Gram-negative pathogens.

摘要

鲍曼不动杆菌 ATCC 19606 可以在没有脂寡糖 (LOS) 的情况下生长。LOS 的缺乏可能是由于早期脂质 A 生物合成途径基因 lpxA、lpxC 或 lpxD 的破坏。尽管 LOS 本身对于鲍曼不动杆菌 ATCC 19606 的生长不是必需的,但先前的研究表明,细胞中脂质 A 生物合成酶 LpxK 的耗尽会由于脂质 A 途径中间产物的毒性积累而抑制生长。LpxK 耗尽细胞的生长可以通过使用 CHIR-090(LpxC)抑制 LOS 生物合成和使用 cerulenin(FabB/F)和吡啶嘧啶(乙酰辅酶 A 羧化酶)抑制脂肪酸生物合成来恢复。在这里,我们通过表明负责在脂肪酸延长循环中将反式 2-烯酰-ACP 转化为酰基-ACP 的烯酰-ACP 还原酶 (FabI) 的抑制也可以在 LpxK 耗尽时恢复生长来扩展这一点。在 LpxK 耗尽期间,脂肪酸生物合成的抑制挽救了 37°C 下的生长,但不能挽救 30°C 下的生长,而 LpxC 抑制的挽救与温度无关。我们利用这些观察结果证明了针对 LOS 和脂肪酸生物合成的靶向高通量生长恢复筛选测定的概念验证,以鉴定 LOS 和脂肪酸生物合成的小分子抑制剂。脂肪酸和 LpxC 抑制的差异温度依赖性为通过途径分离生长刺激化合物提供了一种简单的方法。这种靶向基于细胞的筛选平台对于更快地鉴定在针对临床相关革兰氏阴性病原体的抗菌发现中抑制感兴趣途径的化合物非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3c3/5837183/71a22548866c/pone.0193851.g001.jpg

相似文献

2
LpxK Is Essential for Growth of ATCC 19606: Relationship to Toxic Accumulation of Lipid A Pathway Intermediates.
mSphere. 2017 Jul 26;2(4). doi: 10.1128/mSphere.00199-17. eCollection 2017 Jul-Aug.
3
Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606.
PLoS One. 2016 Aug 15;11(8):e0160918. doi: 10.1371/journal.pone.0160918. eCollection 2016.
7
Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.
Planta. 2015 Jan;241(1):43-56. doi: 10.1007/s00425-014-2162-7. Epub 2014 Sep 11.
8
Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli.
J Biol Chem. 1996 Jan 26;271(4):1833-6. doi: 10.1074/jbc.271.4.1833.
9
Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.
J Biol Chem. 2016 Jan 1;291(1):171-81. doi: 10.1074/jbc.M115.699462. Epub 2015 Nov 13.
10
Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases.
Sci Rep. 2021 Mar 29;11(1):7050. doi: 10.1038/s41598-021-86400-1.

引用本文的文献

1
Constitutive Phenotypic Modification of Lipid A in Clinical Acinetobacter baumannii Isolates.
Microbiol Spectr. 2022 Aug 31;10(4):e0129522. doi: 10.1128/spectrum.01295-22. Epub 2022 Jul 21.
2
Rapid Inhibitor Discovery by Exploiting Synthetic Lethality.
J Am Chem Soc. 2022 Mar 2;144(8):3696-3705. doi: 10.1021/jacs.1c12697. Epub 2022 Feb 16.
3
Border Control: Regulating LPS Biogenesis.
Trends Microbiol. 2021 Apr;29(4):334-345. doi: 10.1016/j.tim.2020.09.008. Epub 2020 Oct 6.
4
Deciphering the Metabolic Pathway Difference Between and by Comparative Proteomics and Metabonomics.
Front Microbiol. 2020 Mar 18;11:396. doi: 10.3389/fmicb.2020.00396. eCollection 2020.
6
Pushing the envelope: LPS modifications and their consequences.
Nat Rev Microbiol. 2019 Jul;17(7):403-416. doi: 10.1038/s41579-019-0201-x.

本文引用的文献

1
LpxK Is Essential for Growth of ATCC 19606: Relationship to Toxic Accumulation of Lipid A Pathway Intermediates.
mSphere. 2017 Jul 26;2(4). doi: 10.1128/mSphere.00199-17. eCollection 2017 Jul-Aug.
3
LpxC inhibitors: a patent review (2010-2016).
Expert Opin Ther Pat. 2017 Nov;27(11):1227-1250. doi: 10.1080/13543776.2017.1360282. Epub 2017 Aug 4.
4
Susceptibility of Clinical Isolates of to a Lipid A Biosynthesis Inhibitor.
Am J Trop Med Hyg. 2017 Jul;97(1):62-67. doi: 10.4269/ajtmh.16-0858.
6
Design, Synthesis, and Properties of a Potent Inhibitor of Pseudomonas aeruginosa Deacetylase LpxC.
J Med Chem. 2017 Jun 22;60(12):5002-5014. doi: 10.1021/acs.jmedchem.7b00377. Epub 2017 Jun 9.
8
Chlamydia spp. development is differentially altered by treatment with the LpxC inhibitor LPC-011.
BMC Microbiol. 2017 Apr 24;17(1):98. doi: 10.1186/s12866-017-0992-8.
9
Structure-based discovery of LpxC inhibitors.
Bioorg Med Chem Lett. 2017 Apr 15;27(8):1670-1680. doi: 10.1016/j.bmcl.2017.03.006. Epub 2017 Mar 6.
10
What is an "ideal" antibiotic? Discovery challenges and path forward.
Biochem Pharmacol. 2017 Jun 1;133:63-73. doi: 10.1016/j.bcp.2017.01.003. Epub 2017 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验