Department of Microbiology, Harvard University, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.
J Am Chem Soc. 2022 Mar 2;144(8):3696-3705. doi: 10.1021/jacs.1c12697. Epub 2022 Feb 16.
Synthetic lethality occurs when inactivation of two genes is lethal but inactivation of either single gene is not. This phenomenon provides an opportunity for efficient compound discovery. Using differential growth screens, one can identify biologically active compounds that selectively inhibit proteins within the synthetic lethal network of any inactivated gene. Here, based purely on synthetic lethalities, we identified two compounds as the only possible inhibitors of lipoteichoic acid (LTA) biosynthesis from a screen of ∼230,000 compounds. Both compounds proved to inhibit the glycosyltransferase UgtP, which assembles the LTA glycolipid anchor. UgtP is required for β-lactam resistance in methicillin-resistant (MRSA), and the inhibitors restored sensitivity to oxacillin in a highly resistant strain. As no other compounds were pursued as possible LTA glycolipid assembly inhibitors, this work demonstrates the extraordinary efficiency of screens that exploit synthetic lethality to discover compounds that target specified pathways. The general approach should be applicable not only to other bacteria but also to eukaryotic cells.
当两个基因的失活是致命的,但单个基因的失活不是致命的时,就会发生合成致死现象。这种现象为高效化合物的发现提供了机会。通过差异生长筛选,可以识别出选择性抑制失活基因的合成致死网络中蛋白质的生物活性化合物。在这里,我们纯粹基于合成致死性,从大约 23 万种化合物的筛选中,确定了两种化合物是脂磷壁酸 (LTA) 生物合成的唯一可能抑制剂。这两种化合物都被证明可以抑制糖基转移酶 UgtP,而 UgtP 是耐甲氧西林金黄色葡萄球菌 (MRSA) 中β-内酰胺耐药所必需的,抑制剂使高度耐药的菌株对苯唑西林重新敏感。由于没有其他化合物被作为可能的 LTA 糖脂装配抑制剂进行研究,因此这项工作证明了利用合成致死性来发现针对特定途径的化合物的筛选具有非凡的效率。这种方法不仅适用于其他细菌,也适用于真核细胞。