Institute for Bio-Medical Convergence, Department of Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon, Metropolitan City, Republic of Korea.
Department of Family Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea.
Int J Cardiol. 2018 Jun 1;260:156-162. doi: 10.1016/j.ijcard.2018.02.043. Epub 2018 Feb 15.
Even though mesenchymal stem cells (MSCs) have angiogenic property, their cytokine secretory capacity is limited to treat ischemic vascular disorders. In present study, we produced genome-edited MSCs that secreted dual chemokine granulocyte chemotactic protein-2 (GCP-2) and stromal-derived factor-1α (SDF-1α) and determined their therapeutic potential in the context of experimental ischemia.
GCP-2 and SDF-1α genes were integrated into safe harbor site at the safe harbor genomic locus of amniotic mesenchymal stem cells (AMM) via transcription activator-like effector nucleases (TALEN). GCP-2 and SDF-1α gene-edited AMM (AMM/GS) were used for quantitative (q)-PCR, Matrigel tube formation, cell migration, Matrigel plug assays and in vivo therapeutic assays using hindlimb ischemia mouse model.
AMM/GS-derived culture media (CM) induced significantly higher tube lengths and branching points as compared to AMM/S CM and AMM CM. Interestingly, Matrigel plug assays revealed that significantly higher levels of red blood cells were found in AMM/GS than AMM/S and AMM Matigel plugs and exhibited micro-vascular like formation. Cells was transplanted into ischemic mouse hindlimbs and compared with control groups. AMM/GS injection prevented limb loss and augmented blood perfusion, suggesting that enhances neovascularization in hindlimb ischemia. In addition, transplanted AMM/GS revealed high vasculogenic potential in vivo compared with transplanted AMM/S.
Taken together, genome-edited MSCs that express dual chemokine GCP-2 and SDF-1α might be alternative therapeutic options for the treatment of ischemic vascular disease.
尽管间充质干细胞(MSCs)具有血管生成特性,但它们的细胞因子分泌能力有限,无法治疗缺血性血管疾病。在本研究中,我们生产了分泌双重趋化因子粒细胞集落刺激因子-2(GCP-2)和基质衍生因子-1α(SDF-1α)的基因编辑间充质干细胞,并确定了它们在实验性缺血情况下的治疗潜力。
通过转录激活因子样效应物核酸酶(TALEN)将 GCP-2 和 SDF-1α 基因整合到羊膜间充质干细胞(AMM)的安全港基因组位点的安全港内。使用 GCP-2 和 SDF-1α 基因编辑的 AMM(AMM/GS)进行定量(q)-PCR、Matrigel 管形成、细胞迁移、Matrigel plugs 分析以及使用后肢缺血小鼠模型进行体内治疗分析。
与 AMM/S CM 和 AMM CM 相比,AMM/GS 衍生的培养基(CM)诱导的管长度和分支点显著增加。有趣的是,Matrigel plugs 分析显示,与 AMM/S 和 AMM Matigel plugs 相比,AMM/GS 中的红细胞水平显著升高,并表现出类似微血管的形成。将细胞移植到缺血性小鼠后肢,并与对照组进行比较。AMM/GS 注射可防止肢体丧失并增加血液灌注,表明增强了后肢缺血中的新生血管形成。此外,与移植的 AMM/S 相比,移植的 AMM/GS 在体内显示出更高的血管生成潜力。
综上所述,表达双重趋化因子 GCP-2 和 SDF-1α 的基因编辑间充质干细胞可能是治疗缺血性血管疾病的替代治疗选择。