Cavazza Alessia, Molina-Estévez Francisco J, Reyes Álvaro Plaza, Ronco Victor, Naseem Asma, Malenšek Špela, Pečan Peter, Santini Annalisa, Heredia Paula, Aguilar-González Araceli, Boulaiz Houria, Ni Qianqian, Cortijo-Gutierrez Marina, Pavlovic Kristina, Herrera Inmaculada, de la Cerda Berta, Garcia-Tenorio Emilio M, Richard Eva, Granados-Principal Sergio, López-Márquez Arístides, Köber Mariana, Stojanovic Marijana, Vidaković Melita, Santos-Garcia Irene, Blázquez Lorea, Haughton Emily, Yan Dongnan, Sánchez-Martín Rosario María, Mazini Loubna, Aseguinolaza Gloria Gonzalez, Miccio Annarita, Rio Paula, Desviat Lourdes R, Gonçalves Manuel A F V, Peng Ling, Jiménez-Mallebrera Cecilia, Molina Francisco Martin, Gupta Dhanu, Lainšček Duško, Luo Yonglun, Benabdellah Karim
Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK.
Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via del Pozzo 71, 41125 Modena, Italy.
Mol Ther Nucleic Acids. 2025 Jan 17;36(1):102457. doi: 10.1016/j.omtn.2025.102457. eCollection 2025 Mar 11.
In the past decade, precise targeting through genome editing has emerged as a promising alternative to traditional therapeutic approaches. Genome editing can be performed using various platforms, where programmable DNA nucleases create permanent genetic changes at specific genomic locations due to their ability to recognize precise DNA sequences. Clinical application of this technology requires the delivery of the editing reagents to transplantable cells or to tissues and organs for approaches, often representing a barrier to achieving the desired editing efficiency and safety. In this review, authored by members of the GenE-HumDi European Cooperation in Science and Technology (COST) Action, we described the plethora of delivery systems available for genome-editing components, including viral and non-viral systems, highlighting their advantages, limitations, and potential application in a clinical setting.
在过去十年中,通过基因组编辑进行精确靶向已成为传统治疗方法的一种有前景的替代方案。基因组编辑可以使用各种平台来进行,其中可编程DNA核酸酶由于能够识别精确的DNA序列,从而在特定基因组位置产生永久性基因变化。这项技术的临床应用需要将编辑试剂递送至可移植细胞或组织和器官,而这些递送方法往往成为实现理想编辑效率和安全性的障碍。在这篇由欧洲科技合作组织(COST)的基因 - 人类疾病(GenE-HumDi)行动成员撰写的综述中,我们描述了大量可用于基因组编辑组件的递送系统,包括病毒和非病毒系统,突出了它们的优点、局限性以及在临床环境中的潜在应用。
Mol Ther Nucleic Acids. 2025-1-17
Mol Ther Nucleic Acids. 2023-10-29
Int J Mol Sci. 2024-7-4
Int J Mol Sci. 2016-4-27
Int J Mol Sci. 2019-6-13
Mol Ther. 2019-1-25
Gene Ther. 2016-10-31
J Hepatol. 2017-5-17
Acta Pharmacol Sin. 2017-6
Mol Ther Nucleic Acids. 2025-7-17
Plant Commun. 2025-8-11
Expert Rev Mol Med. 2025-3-31
Nat Rev Drug Discov. 2024-9
Front Immunol. 2024
Adv Drug Deliv Rev. 2024-8