Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
Genetics and Aging Research Unit, Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129.
J Neurosci. 2018 Apr 4;38(14):3480-3494. doi: 10.1523/JNEUROSCI.2643-17.2018. Epub 2018 Mar 5.
The β-secretase β-site APP-cleaving enzyme 1 (BACE1) is deemed a major culprit in Alzheimer's disease, but accumulating evidence indicates that there is more to the enzyme than driving the amyloidogenic processing of the amyloid precursor protein. For example, BACE1 has emerged as an important regulator of neuronal activity through proteolytic and, most unexpectedly, also through nonproteolytic interactions with several ion channels. Here, we identify and characterize the voltage-gated K channel 3.4 (Kv3.4) as a new and functionally relevant interaction partner of BACE1. Kv3.4 gives rise to A-type current with fast activating and inactivating kinetics and serves to repolarize the presynaptic action potential. We found that BACE1 and Kv3.4 are highly enriched and remarkably colocalized in hippocampal mossy fibers (MFs). In BACE1 mice of either sex, Kv3.4 surface expression was significantly reduced in the hippocampus and, in synaptic fractions thereof, Kv3.4 was specifically diminished, whereas protein levels of other presynaptic K channels such as K1.1 and K2.3 remained unchanged. The apparent loss of presynaptic Kv3.4 affected the strength of excitatory transmission at the MF-CA3 synapse in hippocampal slices of BACE1 mice when probed with the Kv3 channel blocker BDS-I. The effect of BACE1 on Kv3.4 expression and function should be bidirectional, as predicted from a heterologous expression system, in which BACE1 cotransfection produced a concomitant upregulation of Kv3.4 surface level and current based on a physical interaction between the two proteins. Our data show that, by targeting Kv3.4 to presynaptic sites, BACE1 endows the terminal with a powerful means to regulate the strength of transmitter release. The β-secretase β-site APP-cleaving enzyme 1 (BACE1) is infamous for its crucial role in the pathogenesis of Alzheimer's disease, but its physiological functions in the intact nervous system are only gradually being unveiled. Here, we extend previous work implicating BACE1 in the expression and function of voltage-gated Na and K channels. Specifically, we characterize voltage-gated K channel 3.4 (Kv3.4), a presynaptic K channel required for action potential repolarization, as a novel interaction partner of BACE1 at the mossy fiber (MF)-CA3 synapse of the hippocampus. BACE1 promotes surface expression of Kv3.4 at MF terminals, most likely by physically associating with the channel protein in a nonenzymatic fashion. We advance the BACE1-Kv3.4 interaction as a mechanism to strengthen the temporal control over transmitter release from MF terminals.
β-分泌酶 β-位淀粉样前体蛋白裂解酶 1(BACE1)被认为是阿尔茨海默病的主要罪魁祸首,但越来越多的证据表明,该酶的作用不仅仅是驱动淀粉样前体蛋白的淀粉样生成加工。例如,BACE1 通过蛋白水解以及最令人惊讶的非蛋白水解相互作用与几种离子通道一起,已经成为神经元活性的重要调节剂。在这里,我们确定并表征电压门控钾通道 3.4(Kv3.4)为 BACE1 的一个新的功能相关的相互作用伙伴。Kv3.4 产生具有快速激活和失活动力学的 A 型电流,有助于复极化突触前动作电位。我们发现 BACE1 和 Kv3.4 在海马苔藓纤维(MF)中高度富集且显著共定位。在两性 BACE1 小鼠中,海马体中的 Kv3.4 表面表达显著降低,突触部分中的 Kv3.4 特异性减少,而其他突触前 K 通道(如 K1.1 和 K2.3)的蛋白水平保持不变。当用 Kv3 通道阻滞剂 BDS-I 在海马脑片的 MF-CA3 突触处探测时,BACE1 对 Kv3.4 表达和功能的明显丧失影响了兴奋性传递的强度。根据异源表达系统的预测,BACE1 对 Kv3.4 表达和功能的影响应该是双向的,因为在该系统中,BACE1 共转染产生了两种蛋白质之间的物理相互作用,从而导致 Kv3.4 表面水平和电流的伴随上调。我们的数据表明,通过将 Kv3.4 靶向到突触前部位,BACE1 赋予末端一种调节递质释放强度的强大手段。β-分泌酶 β-位 APP 裂解酶 1(BACE1)因其在阿尔茨海默病发病机制中的关键作用而声名狼藉,但它在完整神经系统中的生理功能只是逐渐被揭示。在这里,我们扩展了之前将 BACE1 牵连到电压门控 Na 和 K 通道表达和功能的工作。具体来说,我们将电压门控钾通道 3.4(Kv3.4)鉴定为海马苔藓纤维(MF)-CA3 突触的一种新的 BACE1 相互作用伙伴,Kv3.4 是一种突触前 K 通道,是动作电位复极化所必需的。BACE1 促进 Kv3.4 在 MF 末端的表面表达,这很可能是通过以非酶的方式与通道蛋白物理结合来实现的。我们将 BACE1-Kv3.4 相互作用推进为一种增强 MF 末端递质释放的时间控制的机制。