Suppr超能文献

利用过表达 CXCR4 的纳米颗粒工程化脂肪来源干细胞靶向肿瘤缺氧。

Targeting Tumor Hypoxia Using Nanoparticle-engineered CXCR4-overexpressing Adipose-derived Stem Cells.

机构信息

Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Theranostics. 2018 Feb 2;8(5):1350-1360. doi: 10.7150/thno.22736. eCollection 2018.

Abstract

Hypoxia, a hallmark of malignant tumors, often correlates with increasing tumor aggressiveness and poor treatment outcomes. Due to a lack of vasculature, effective drug delivery to hypoxic tumor regions remains challenging. Signaling through the chemokine SDF-1α and its receptor CXCR4 plays a critical role in the homing of stem cells to ischemia for potential use as drug-delivery vehicles. To harness this mechanism for targeting tumor hypoxia, we developed polymeric nanoparticle-induced CXCR4-overexpressing human adipose-derived stem cells (hADSCs). Using glioblastoma multiforme (GBM) as a model tumor, we evaluated the ability of CXCR4-overexpressing hADSCs to target tumor hypoxia in vitro using a 2D migration assay and a 3D collagen hydrogel model. Compared to untransfected hADSCs, CXCR4-overexpressing hADSCs showed enhanced migration in response to hypoxia and penetrated the hypoxic core within tumor spheres. When injected in the contralateral brain in a mouse intracranial GBM xenograft, CXCR4-overexpressing hADSCs exhibited long-range migration toward GBM and preferentially penetrated the hypoxic tumor core. Intravenous injection also led to effective targeting of tumor hypoxia in a subcutaneous tumor model. Together, these results validate polymeric nanoparticle-induced CXCR4-overexpressing hADSCs as a potent cellular vehicle for targeting tumor hypoxia, which may be broadly useful for enhancing drug delivery to various cancer types.

摘要

缺氧是恶性肿瘤的一个标志,通常与肿瘤侵袭性增加和治疗效果不佳相关。由于缺乏血管,有效将药物递送到缺氧肿瘤区域仍然具有挑战性。趋化因子 SDF-1α及其受体 CXCR4 的信号转导在干细胞归巢到缺血部位以潜在用作药物递送载体方面发挥着关键作用。为了利用这种针对肿瘤缺氧的机制,我们开发了聚合物纳米颗粒诱导的过表达 CXCR4 的人脂肪来源干细胞(hADSCs)。我们使用多形性胶质母细胞瘤(GBM)作为模型肿瘤,使用 2D 迁移测定和 3D 胶原水凝胶模型评估过表达 CXCR4 的 hADSCs 靶向肿瘤缺氧的能力。与未转染的 hADSCs 相比,过表达 CXCR4 的 hADSCs 在缺氧条件下表现出增强的迁移能力,并穿透肿瘤球体的缺氧核心。当在小鼠颅内 GBM 异种移植模型中注射到对侧大脑时,过表达 CXCR4 的 hADSCs 表现出向 GBM 的长距离迁移,并优先穿透缺氧肿瘤核心。静脉注射也导致皮下肿瘤模型中肿瘤缺氧的有效靶向。总之,这些结果验证了聚合物纳米颗粒诱导的过表达 CXCR4 的 hADSCs 作为靶向肿瘤缺氧的有效细胞载体,这可能广泛用于增强各种癌症类型的药物递送。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31c9/5835941/7ef20117d049/thnov08p1350g001.jpg

相似文献

1
Targeting Tumor Hypoxia Using Nanoparticle-engineered CXCR4-overexpressing Adipose-derived Stem Cells.
Theranostics. 2018 Feb 2;8(5):1350-1360. doi: 10.7150/thno.22736. eCollection 2018.
2
Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13857-13862. doi: 10.1073/pnas.1615396113. Epub 2016 Nov 14.
4
CXCR4 Overexpression in Human Adipose Tissue-Derived Stem Cells Improves Homing and Engraftment in an Animal Limb Ischemia Model.
Cell Transplant. 2017 Feb 16;26(2):191-204. doi: 10.3727/096368916X692708. Epub 2016 Aug 5.
7
Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment.
Cytotherapy. 2016 Jul;18(7):828-37. doi: 10.1016/j.jcyt.2016.03.299. Epub 2016 May 17.
8
Neural stem cell tropism to glioma: critical role of tumor hypoxia.
Mol Cancer Res. 2008 Dec;6(12):1819-29. doi: 10.1158/1541-7786.MCR-08-0146.
10
Adipose stem cell crosstalk with chemo-residual breast cancer cells: implications for tumor recurrence.
Breast Cancer Res Treat. 2019 Apr;174(2):413-422. doi: 10.1007/s10549-018-05103-w. Epub 2018 Dec 29.

引用本文的文献

1
Chemokines in the tumor microenvironment: implications for lung cancer and immunotherapy.
Front Immunol. 2024 Jul 16;15:1443366. doi: 10.3389/fimmu.2024.1443366. eCollection 2024.
2
Monitoring Cell Proliferation by Dye Dilution: Considerations for Panel Design.
Methods Mol Biol. 2024;2779:159-216. doi: 10.1007/978-1-0716-3738-8_9.
3
An osteosarcoma-on-a-chip model for studying osteosarcoma matrix-cell interactions and drug responses.
Bioact Mater. 2023 Dec 14;34:1-16. doi: 10.1016/j.bioactmat.2023.12.005. eCollection 2024 Apr.
4
Alleviation of Angiotensin II-Induced Vascular Endothelial Cell Injury Through Long Non-coding RNA TUG1 Inhibition.
Comb Chem High Throughput Screen. 2024;27(10):1523-1532. doi: 10.2174/0113862073265220231004071645.
5
Living Cells and Cell-Derived Vesicles: A Trojan Horse Technique for Brain Delivery.
Pharmaceutics. 2023 Apr 17;15(4):1257. doi: 10.3390/pharmaceutics15041257.
6
Mesenchymal stem cell therapy for neurological disorders: The light or the dark side of the force?
Front Bioeng Biotechnol. 2023 Feb 28;11:1139359. doi: 10.3389/fbioe.2023.1139359. eCollection 2023.
7
Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders.
Molecules. 2023 Jan 28;28(3):1283. doi: 10.3390/molecules28031283.
8
Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214757120. doi: 10.1073/pnas.2214757120. Epub 2022 Dec 27.
9
Mechanosensitive Ion Channel PIEZO1 Signaling in the Hall-Marks of Cancer: Structure and Functions.
Cancers (Basel). 2022 Oct 10;14(19):4955. doi: 10.3390/cancers14194955.
10
Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable.
Pharmaceutics. 2022 Aug 15;14(8):1697. doi: 10.3390/pharmaceutics14081697.

本文引用的文献

2
Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13857-13862. doi: 10.1073/pnas.1615396113. Epub 2016 Nov 14.
4
CXCL12-CXCR7 axis contributes to the invasive phenotype of pancreatic cancer.
Oncotarget. 2016 Sep 20;7(38):62006-62018. doi: 10.18632/oncotarget.11330.
6
A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer.
Biomaterials. 2016 Jun;91:140-150. doi: 10.1016/j.biomaterials.2016.03.023. Epub 2016 Mar 17.
7
Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy.
ACS Nano. 2016 Feb 23;10(2):2375-85. doi: 10.1021/acsnano.5b07172. Epub 2016 Jan 19.
10
Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.
Brain. 2015 Jun;138(Pt 6):1710-21. doi: 10.1093/brain/awv094. Epub 2015 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验