文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米颗粒的弹性调节细胞膜包裹纳米颗粒的形成及其纳米生物相互作用。

Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions.

机构信息

Therapeutics Research Group, University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba 4102, QLD, Australia.

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia 4072, QLD, Australia.

出版信息

Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214757120. doi: 10.1073/pnas.2214757120. Epub 2022 Dec 27.


DOI:10.1073/pnas.2214757120
PMID:36574680
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9910481/
Abstract

Cell membrane-coated nanoparticles are emerging as a new type of promising nanomaterials for immune evasion and targeted delivery. An underlying premise is that the unique biological functions of natural cell membranes can be conferred on the inherent physiochemical properties of nanoparticles by coating them with a cell membrane. However, the extent to which the membrane protein properties are preserved on these nanoparticles and the consequent bio-nano interactions are largely unexplored. Here, we synthesized two mesenchymal stem cell (MSC) membrane-coated silica nanoparticles (MCSNs), which have similar sizes but distinctly different stiffness values (MPa and GPa). Unexpectedly, a much lower macrophage uptake, but much higher cancer cell uptake, was found with the soft MCSNs compared with the stiff MCSNs. Intriguingly, we discovered that the soft MCSNs enabled the forming of a more protein-rich membrane coating and that coating had a high content of the MSC chemokine CXCR4 and MSC surface marker CD90. This led to the soft MCSNs enhancing cancer cell uptake mediated by the CD90/integrin receptor-mediated pathway and CXCR4/SDF-1 pathways. These findings provide a major step forward in our fundamental understanding of how the combination of nanoparticle elasticity and membrane coating may be used to facilitate bio-nano interactions and pave the way forward in the development of more effective cancer nanomedicines.

摘要

细胞膜包覆纳米颗粒作为一种新型的有前途的纳米材料,具有免疫逃逸和靶向递送的作用。其潜在前提是通过将细胞膜包覆在纳米颗粒上,可以赋予纳米颗粒固有物理化学性质独特的生物功能。然而,这些纳米颗粒上的膜蛋白性质的保留程度以及由此产生的生物-纳米相互作用在很大程度上仍未得到探索。在这里,我们合成了两种间充质干细胞(MSC)细胞膜包覆的二氧化硅纳米颗粒(MCSN),它们具有相似的尺寸,但明显不同的硬度值(MPa 和 GPa)。出乎意料的是,与硬 MCSN 相比,软 MCSN 具有更低的巨噬细胞摄取率,但更高的癌细胞摄取率。有趣的是,我们发现软 MCSN 能够形成更富含蛋白质的膜涂层,并且该涂层具有高含量的 MSC 趋化因子 CXCR4 和 MSC 表面标记物 CD90。这导致软 MCSN 通过 CD90/整合素受体介导的途径和 CXCR4/SDF-1 途径增强了癌细胞的摄取。这些发现为我们深入了解纳米颗粒弹性和膜涂层的结合如何促进生物-纳米相互作用提供了重要的一步,并为开发更有效的癌症纳米药物铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/b71ce73dc8d0/pnas.2214757120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/43fb1c57701e/pnas.2214757120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/046310905111/pnas.2214757120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/7105e6b9df17/pnas.2214757120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/c7f826917a70/pnas.2214757120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/b71ce73dc8d0/pnas.2214757120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/43fb1c57701e/pnas.2214757120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/046310905111/pnas.2214757120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/7105e6b9df17/pnas.2214757120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/c7f826917a70/pnas.2214757120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9910481/b71ce73dc8d0/pnas.2214757120fig05.jpg

相似文献

[1]
Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions.

Proc Natl Acad Sci U S A. 2023-1-3

[2]
The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.

Acc Chem Res. 2019-5-31

[3]
Nanoparticle elasticity regulates phagocytosis and cancer cell uptake.

Sci Adv. 2020-4

[4]
Effect of Cell Membrane-cloaked Nanoparticle Elasticity on Nano-Bio Interaction.

Small Methods. 2023-6

[5]
Effect of Elasticity of Silica Capsules on Cellular Uptake.

Langmuir. 2021-10-12

[6]
Coating nanoparticles with cell membranes for targeted drug delivery.

J Drug Target. 2015

[7]
Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy.

ACS Appl Mater Interfaces. 2018-6-26

[8]
Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery.

ACS Nano. 2019-7-11

[9]
Nano-Cell Interactions of Non-Cationic Bionanomaterials.

Acc Chem Res. 2019-5-6

[10]
Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses.

Int J Mol Sci. 2021-9-3

引用本文的文献

[1]
Advances in nanomechanical property mapping by atomic force microscopy.

Nanoscale Adv. 2025-8-26

[2]
Enhancing gutta-percha with silver mesoporous calcium silicate nanoparticles for advanced endodontic applications.

PLoS One. 2025-8-12

[3]
Biomimetic cancer cell membrane-enriched vitamin E-stapled gemcitabine-loaded TPGS micelles for pancreatic cancer therapy.

Drug Deliv. 2025-12

[4]
Recent advances of engineering cell membranes for nanomedicine delivery across the blood-brain barrier.

J Nanobiotechnology. 2025-7-8

[5]
Effect of Nanoparticle Rigidity on the Interaction of Stromal Membrane Particles with Leukemia Cells.

Adv Healthc Mater. 2025-7

[6]
Nano-formulations in disease therapy: designs, advances, challenges, and future directions.

J Nanobiotechnology. 2025-5-30

[7]
Understanding the Mechanism of Cardiotoxicity Induced by Nanomaterials: A Comprehensive Review.

Small Sci. 2025-2-20

[8]
Improving tumor treatment: Cell membrane-coated nanoparticles for targeted therapies.

Mater Today Bio. 2025-4-23

[9]
Nanotherapeutic strategies exploiting biological traits of cancer stem cells.

Bioact Mater. 2025-4-3

[10]
Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo.

Small Sci. 2024-7-30

本文引用的文献

[1]
Stem cell membrane-coated abiotic nanomaterials for biomedical applications.

J Control Release. 2022-11

[2]
Nanoparticles functionalized with stem cell secretome and CXCR4-overexpressing endothelial membrane for targeted osteoporosis therapy.

J Nanobiotechnology. 2022-1-15

[3]
Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration.

Proc Natl Acad Sci U S A. 2021-10-19

[4]
Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles.

Nat Commun. 2021-9-30

[5]
Influence of nanoparticle mechanical property on protein corona formation.

J Colloid Interface Sci. 2022-1-15

[6]
Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury.

Theranostics. 2021

[7]
Artificial cells for the treatment of liver diseases.

Acta Biomater. 2021-8

[8]
Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics.

Nat Nanotechnol. 2021-3

[9]
The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors.

Chem Rev. 2021-2-10

[10]
Molecular Crosstalk Between Macrophages and Mesenchymal Stromal Cells.

Front Cell Dev Biol. 2020-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索