Department of Materials Science and Engineering , Tokyo Institute of Technology , O-okayama , Meguro-ku, Tokyo 152-8552 , Japan.
ACS Appl Mater Interfaces. 2018 Mar 28;10(12):10262-10269. doi: 10.1021/acsami.8b00416. Epub 2018 Mar 15.
Dithieno[2,3- d;2'3'- d']benzo[1,2- b;4,5- b']dithiophene forms mixed-stack charge-transfer complexes with fluorinated tetracyanoquinodimethanes (F TCNQs, n = 0, 2, and 4) and dimethyldicyanoquinonediimine (DMDCNQI). The single-crystal transistors of the F TCNQ complexes exhibit electron transport, whereas the DMDCNQI complex shows hole transport as well. The dominance of electron transport is explained by the superexchange mechanism, where transfers corresponding to the acceptor-to-acceptor hopping ( t) are more than 10 times larger than the donor-to-donor hopping ( t). This is because the donor orbital next to the highest occupied molecular orbital makes a large contribution to the electron transport owing to the symmetry matching. Like this, inherently asymmetrical electron and hole transport in alternating stacks is understood by analyzing bridge orbitals other than the transport orbitals.
并苯[1,2- b;4,5- b']二噻吩与氟化四氰基对醌二甲烷(FTCNQ,n=0、2 和 4)和二氰二甲基喹喔啉(DMDCNQI)形成混合堆积的电荷转移复合物。FTCNQ 配合物的单晶晶体管表现出电子输运,而 DMDCNQI 配合物则表现出空穴输运。电子输运的主导地位可以用超交换机制来解释,其中对应于受体-受体跳跃(t)的转移比供体-供体跳跃(t)大 10 倍以上。这是因为由于对称性匹配,紧邻最高占据分子轨道的供体轨道对电子输运有很大贡献。通过分析除输运轨道以外的桥轨道,可以理解交替堆积中固有的不对称电子和空穴输运。