Suppr超能文献

活跃睡眠促进发育中感觉运动网络的功能连接。

Active Sleep Promotes Functional Connectivity in Developing Sensorimotor Networks.

机构信息

Department of Psychological and Brain Sciences, University of Iowa, Iowa City, 52242, Iowa, USA.

Delta Center, University of Iowa, Iowa City, 52242, Iowa, USA.

出版信息

Bioessays. 2018 Apr;40(4):e1700234. doi: 10.1002/bies.201700234. Epub 2018 Mar 6.

Abstract

A ubiquitous feature of active (REM) sleep in mammals and birds is its relative abundance in early development. In rat pups across the first two postnatal weeks, active sleep promotes the expression of synchronized oscillatory activity within and between cortical and subcortical sensorimotor structures. Sensory feedback from self-generated myoclonic twitches - which are produced exclusively during active sleep - also triggers neural oscillations in those structures. We have proposed that one of the functions of active sleep in early infancy is to provide a context for synchronizing developing structures. Specifically, neural oscillations contribute to a variety of neurodevelopmental processes, including synapse formation, neuronal differentiation and migration, apoptosis, and the refinement of topographic maps. In addition, synchronized oscillations promote functional connectivity between distant brain areas. Consequently, any condition or manipulation that restricts active sleep can, in turn, deprive the infant animal of substantial sensory experience, resulting in atypical developmental trajectories.

摘要

活跃(REM)睡眠是哺乳动物和鸟类的一个普遍特征,其在早期发育中相对丰富。在出生后两周内的大鼠幼崽中,活跃睡眠促进了皮质和皮质下感觉运动结构内和之间同步振荡活动的表达。源自自发肌阵挛抽搐的感觉反馈 - 仅在活跃睡眠期间产生 - 也会引发这些结构中的神经振荡。我们提出,活跃睡眠在婴儿早期的一个功能是为发育中的结构提供同步的环境。具体而言,神经振荡有助于多种神经发育过程,包括突触形成、神经元分化和迁移、细胞凋亡以及地形图的细化。此外,同步振荡促进了远距离脑区之间的功能连接。因此,任何限制活跃睡眠的条件或操作都会反过来剥夺婴儿动物大量的感觉体验,导致发育轨迹异常。

相似文献

1
Active Sleep Promotes Functional Connectivity in Developing Sensorimotor Networks.
Bioessays. 2018 Apr;40(4):e1700234. doi: 10.1002/bies.201700234. Epub 2018 Mar 6.
2
Theta Oscillations during Active Sleep Synchronize the Developing Rubro-Hippocampal Sensorimotor Network.
Curr Biol. 2017 May 22;27(10):1413-1424.e4. doi: 10.1016/j.cub.2017.03.077. Epub 2017 May 4.
3
Active Sleep Promotes Coherent Oscillatory Activity in the Cortico-Hippocampal System of Infant Rats.
Cereb Cortex. 2020 Apr 14;30(4):2070-2082. doi: 10.1093/cercor/bhz223.
4
Twitches emerge postnatally during quiet sleep in human infants and are synchronized with sleep spindles.
Curr Biol. 2021 Aug 9;31(15):3426-3432.e4. doi: 10.1016/j.cub.2021.05.038. Epub 2021 Jun 17.
5
Sleep as a window on the sensorimotor foundations of the developing hippocampus.
Hippocampus. 2022 Feb;32(2):89-97. doi: 10.1002/hipo.23334. Epub 2021 May 4.
6
The Case of the Disappearing Spindle Burst.
Neural Plast. 2016;2016:8037321. doi: 10.1155/2016/8037321. Epub 2016 Mar 28.
8
Variations in connectivity in the sensorimotor and default-mode networks during the first nocturnal sleep cycle.
Brain Connect. 2012;2(4):177-90. doi: 10.1089/brain.2012.0075. Epub 2012 Aug 29.
9
Functional Brain Connectivity Develops Rapidly Around Term Age and Changes Between Vigilance States in the Human Newborn.
Cereb Cortex. 2016 Dec;26(12):4540-4550. doi: 10.1093/cercor/bhv219. Epub 2015 Sep 23.
10
Beyond dreams: do sleep-related movements contribute to brain development?
Front Neurol. 2010 Nov 1;1:140. doi: 10.3389/fneur.2010.00140. eCollection 2010.

引用本文的文献

1
A light in the darkness: Early phases of development and the emergence of cognition.
Dev Cogn Neurosci. 2025 Apr;72:101527. doi: 10.1016/j.dcn.2025.101527. Epub 2025 Feb 7.
3
Early-life maturation of the somatosensory cortex: sensory experience and beyond.
Front Neural Circuits. 2024 Jul 8;18:1430783. doi: 10.3389/fncir.2024.1430783. eCollection 2024.
4
Sleep as a driver of pre- and postnatal brain development.
Pediatr Res. 2024 Nov;96(6):1503-1509. doi: 10.1038/s41390-024-03371-5. Epub 2024 Jul 3.
5
6
Machine Learning-Derived Active Sleep as an Early Predictor of White Matter Development in Preterm Infants.
J Neurosci. 2024 Jan 31;44(5):e1024232023. doi: 10.1523/JNEUROSCI.1024-23.2023.
8
Changes of cerebral functional connectivity induced by foot reflexology in a RCT.
Sci Rep. 2023 Oct 10;13(1):17139. doi: 10.1038/s41598-023-44325-x.
9
Sleep and brain evolution across the human lifespan: A mutual embrace.
Front Netw Physiol. 2022 Aug 3;2:938012. doi: 10.3389/fnetp.2022.938012. eCollection 2022.
10
Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse.
Front Neuroanat. 2023 Jan 25;17:1105998. doi: 10.3389/fnana.2023.1105998. eCollection 2023.

本文引用的文献

1
Horizontal Synchronization of Neuronal Activity in the Barrel Cortex of the Neonatal Rat by Spindle-Burst Oscillations.
Front Cell Neurosci. 2018 Jan 19;12:5. doi: 10.3389/fncel.2018.00005. eCollection 2018.
2
Methodological Approach for Optogenetic Manipulation of Neonatal Neuronal Networks.
Front Cell Neurosci. 2017 Aug 14;11:239. doi: 10.3389/fncel.2017.00239. eCollection 2017.
4
Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex.
Neuroscience. 2017 Sep 1;358:190-200. doi: 10.1016/j.neuroscience.2017.06.030. Epub 2017 Jun 27.
5
Theta Oscillations during Active Sleep Synchronize the Developing Rubro-Hippocampal Sensorimotor Network.
Curr Biol. 2017 May 22;27(10):1413-1424.e4. doi: 10.1016/j.cub.2017.03.077. Epub 2017 May 4.
7
Frontal beta-theta network during REM sleep.
Elife. 2017 Jan 25;6:e18894. doi: 10.7554/eLife.18894.
8
REM sleep selectively prunes and maintains new synapses in development and learning.
Nat Neurosci. 2017 Mar;20(3):427-437. doi: 10.1038/nn.4479. Epub 2017 Jan 16.
9
Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity.
Front Neural Circuits. 2016 Dec 21;10:103. doi: 10.3389/fncir.2016.00103. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验