Liu Xiaoyi, Cai Jin, Luo Sheng-Nian
The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, P. R. China.
Phys Chem Chem Phys. 2018 Mar 14;20(11):7875-7884. doi: 10.1039/c8cp00127h.
Low-cycle fatigue behaviors of graphene-copper nanolayered (GCuNL) composites are explored at different interface configurations and repeat layer spacings. The graphene interfaces can trap dislocations through impeding the propagation of dislocations in copper layers, giving rise to the absence of softening, and an increase in the fatigue strength of GCuNL composites (up to 400% that of pure copper). This anti-fatigue effect is independent of the crystal orientation of copper or the chirality of graphene due to interfacial constraints and can be controlled by tailoring the repeat layer spacing. Low repeat layer spacing increases the instability and nonlinearity of the composites, while high repeat layer spacing decreases the anti-fatigue effect. The optimum value of the repeat layer spacing for the GCuNL composites is 3-7 nm, in order to achieve a balanced anti-fatigue capability and interface stability.
研究了不同界面构型和重复层间距下石墨烯-铜纳米层状(GCuNL)复合材料的低周疲劳行为。石墨烯界面可通过阻碍位错在铜层中的传播来捕获位错,从而避免软化现象,并提高GCuNL复合材料的疲劳强度(高达纯铜的400%)。由于界面约束,这种抗疲劳效应与铜的晶体取向或石墨烯的手性无关,并且可以通过调整重复层间距来控制。低重复层间距会增加复合材料的不稳定性和非线性,而高重复层间距会降低抗疲劳效果。GCuNL复合材料的重复层间距最佳值为3-7nm,以实现抗疲劳能力和界面稳定性的平衡。