Zhao Yuxin, Liu Xiaoyi, Zhu Jun, Luo Sheng-Nian
College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, P. R. China.
Phys Chem Chem Phys. 2019 Aug 21;21(31):17393-17399. doi: 10.1039/c9cp02980j. Epub 2019 Jul 30.
The mechanical properties of graphene-Cu nanolayered (GCuNL) composites under bend loading are investigated via an energy-based analytical model and molecular dynamics (MD) simulations. For an anisotropic material, if it has a weak strength in a certain direction, improving the mechanical properties along this direction is normally difficult for its composites. Here, we find that the flexibility of GCuNL composites can be improved considerably by graphene interfaces, despite graphene's small bending stiffness. The graphene interfaces can delocalize slip bands in the inner Cu layers of GCuNL composites, and impede local nucleation of dislocations, thus greatly increasing the yield and failure bend angles. As the thickness decreases, the flexibility of GCuNL nanofilms increases. However, the GCuNL nanofilms are thermodynamically unstable due to interface instability when the repeat layer spacing is less than 2 nm. The energy-based analytical model for large deformation can accurately characterize the bending response of GCuNL nanofilms.
通过基于能量的分析模型和分子动力学(MD)模拟研究了石墨烯 - 铜纳米层状(GCuNL)复合材料在弯曲载荷下的力学性能。对于各向异性材料,如果其在某个方向上强度较弱,那么提高其复合材料沿该方向的力学性能通常较为困难。在此,我们发现尽管石墨烯的弯曲刚度较小,但GCuNL复合材料的柔韧性可通过石墨烯界面得到显著改善。石墨烯界面能够使GCuNL复合材料内部铜层中的滑移带非局部化,并阻碍位错的局部形核,从而大幅提高屈服和失效弯曲角度。随着厚度减小,GCuNL纳米薄膜的柔韧性增加。然而,当重复层间距小于2 nm时,由于界面不稳定性,GCuNL纳米薄膜在热力学上是不稳定的。用于大变形的基于能量的分析模型能够准确地表征GCuNL纳米薄膜的弯曲响应。