Suppr超能文献

纳米级生物催化剂的工程设计用于联合肿瘤饥饿和低温光热治疗。

Engineering of a Nanosized Biocatalyst for Combined Tumor Starvation and Low-Temperature Photothermal Therapy.

机构信息

Chongqing Engineering Research Center of Pharmaceutical Sciences , Chongqing Medical and Pharmaceutical College , Chongqing 401331 , China.

Laboratory of Ultrasound Molecular Imaging , Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China.

出版信息

ACS Nano. 2018 Mar 27;12(3):2858-2872. doi: 10.1021/acsnano.8b00309. Epub 2018 Mar 12.

Abstract

Tumor hypoxia is one of the major challenges for the treatment of tumors, as it may negatively affect the efficacy of various anticancer modalities. In this study, a tumor-targeted redox-responsive composite biocatalyst is designed and fabricated, which may combine tumor starvation therapy and low-temperature photothermal therapy for the treatment of oxygen-deprived tumors. The nanosystem was prepared by loading porous hollow Prussian Blue nanoparticles (PHPBNs) with glucose oxidase (GOx) and then coating their surface with hyaluronic acid (HA) via redox-cleavable linkage, therefore allowing the nanocarrier to bind specifically with CD44-overexpressing tumor cells while also exerting control over the cargo release profile. The nanocarriers are designed to enhance the efficacy of the hypoxia-suppressed GOx-mediated starvation therapy by catalyzing the decomposition of intratumoral hydroperoxide into oxygen with PHPBNs, and the enhanced glucose depletion by the two complementary biocatalysts may consequently suppress the expression of heat shock proteins (HSPs) after photothermal treatment to reduce their resistance to the PHPBN-mediated low-temperature photothermal therapies.

摘要

肿瘤缺氧是肿瘤治疗的主要挑战之一,因为它可能会对各种抗癌方式的疗效产生负面影响。在这项研究中,设计并制备了一种肿瘤靶向的氧化还原响应型复合生物催化剂,它可以结合肿瘤饥饿疗法和低温光热疗法来治疗缺氧肿瘤。该纳米系统是通过将葡萄糖氧化酶(GOx)负载到多孔空心普鲁士蓝纳米粒子(PHPBNs)中,然后通过氧化还原裂解键将其表面包覆上透明质酸(HA)来制备的,因此允许纳米载体特异性地与过表达 CD44 的肿瘤细胞结合,同时还可以控制货物的释放情况。纳米载体的设计目的是通过 PHPBNs 催化肿瘤内过氧化物分解为氧气来增强缺氧抑制的 GOx 介导的饥饿疗法的疗效,并且两种互补的生物催化剂的增强葡萄糖耗竭作用可能会在光热治疗后抑制热休克蛋白(HSPs)的表达,从而降低它们对 PHPBN 介导的低温光热疗法的耐药性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验