文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Pd@Pt-GOx/HA 作为一种新型酶级联纳米反应器用于高效饥饿增强化学动力学癌症治疗。

Pd@Pt-GOx/HA as a Novel Enzymatic Cascade Nanoreactor for High-Efficiency Starving-Enhanced Chemodynamic Cancer Therapy.

机构信息

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China.

出版信息

ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51249-51262. doi: 10.1021/acsami.0c15211. Epub 2020 Nov 8.


DOI:10.1021/acsami.0c15211
PMID:33161703
Abstract

Glucose oxidase (GOx)-mediated starvation therapy has demonstrated good application prospect in cancer treatment. However, the glucose- and oxygen-depletion starvation therapy still suffers from some limitations like low therapeutic efficiency and potential side effects to normal tissues. To overcome these disadvantages, herein a novel enzymatic cascade nanoreactor (Pd@Pt-GOx/hyaluronic acid (HA)) with controllable enzymatic activities was developed for high-efficiency starving-enhanced chemodynamic cancer therapy. The Pd@Pt-GOx/HA was fabricated by covalent conjugation of GOx onto Pd@Pt nanosheets (NSs), followed by linkage with hyaluronic acid (HA). The modification of HA on Pd@Pt-GOx could block the GOx activity, catalase (CAT)-like and peroxidase (POD)-like activities of Pd@Pt, reduce the cytotoxicity to normal cells and organs, and effectively target CD44-overexpressed tumors by active targeting and passive enhanced permeability and retention (EPR) effect. After endocytosis by tumor cells, the intracellular hyaluronidase (Hyase) could decompose the outer HA and expose Pd@Pt-GOx for the enzymatic cascade reaction. The GOx on the Pd@Pt-GOx could catalyze the oxidation of intratumoral glucose by O for cancer starvation therapy, while the O produced from the decomposition of endogenous HO by the Pd@Pt with the CAT-like activity could accelerate the O-dependent depletion of glucose by GOx. Meanwhile, the upregulated acidity and HO content in the tumor region generated by GOx catalytic oxidation of glucose dramatically facilitated the pH-responsive POD-like activity of the Pd@Pt nanozyme, which then catalyzed degradation of the HO to generate abundant highly toxic OH, thereby realizing nanozyme-mediated starving-enhanced chemodynamic cancer therapy. and results indicated that the controllable, self-activated enzymatic cascade nanoreactors exerted highly efficient anticancer effects with negligible biotoxicity.

摘要

葡萄糖氧化酶(GOx)介导的饥饿治疗在癌症治疗中显示出良好的应用前景。然而,葡萄糖和氧气耗竭的饥饿治疗仍然存在一些局限性,如治疗效率低和对正常组织的潜在副作用。为了克服这些缺点,本文开发了一种具有可控酶活性的新型酶级联纳米反应器(Pd@Pt-GOx/透明质酸(HA)),用于高效饥饿增强化学动力学癌症治疗。Pd@Pt-GOx/HA 通过将 GOx 共价偶联到 Pd@Pt 纳米片(NSs)上,然后与透明质酸(HA)连接来制备。HA 对 Pd@Pt-GOx 的修饰可以阻断 GOx 活性、Pd@Pt 的类过氧化物酶(CAT)和过氧化物酶(POD)活性,降低对正常细胞和器官的细胞毒性,并通过主动靶向和被动增强渗透和保留(EPR)效应有效靶向 CD44 过表达的肿瘤。肿瘤细胞内吞后,细胞内透明质酸酶(Hyase)可分解外源性 HA 并暴露出 Pd@Pt-GOx 以进行酶级联反应。Pd@Pt-GOx 上的 GOx 可通过 O 催化肿瘤内葡萄糖的氧化,进行癌症饥饿治疗,而由 CAT 样活性分解内源性 HO 产生的 O 可加速 GOx 依赖的葡萄糖耗竭。同时,GOx 催化氧化葡萄糖产生的肿瘤区域升高的酸度和 HO 含量极大地促进了 Pd@Pt 纳米酶的 pH 响应 POD 样活性,从而催化 HO 的降解生成丰富的高毒性 OH,从而实现纳米酶介导的饥饿增强化学动力学癌症治疗。 和 结果表明,可控的、自激活的酶级联纳米反应器具有高效的抗癌作用,生物毒性可忽略不计。

相似文献

[1]
Pd@Pt-GOx/HA as a Novel Enzymatic Cascade Nanoreactor for High-Efficiency Starving-Enhanced Chemodynamic Cancer Therapy.

ACS Appl Mater Interfaces. 2020-11-18

[2]
Promoting Oxidative Stress in Cancer Starvation Therapy by Site-Specific Startup of Hyaluronic Acid-Enveloped Dual-Catalytic Nanoreactors.

ACS Appl Mater Interfaces. 2019-5-14

[3]
Cascade-Reaction-Based Nanodrug for Combined Chemo/Starvation/Chemodynamic Therapy against Multidrug-Resistant Tumors.

ACS Appl Mater Interfaces. 2019-11-25

[4]
Dumbbell-shaped bimetallic AuPd nanoenzymes for NIR-II cascade catalysis-photothermal synergistic therapy.

Acta Biomater. 2024-3-15

[5]
A multifunctional cascade enzyme system for enhanced starvation/chemodynamic combination therapy against hypoxic tumors.

J Colloid Interface Sci. 2024-7-15

[6]
A flowerlike FePt/MnO/GOx-based cascade nanoreactor with sustainable O supply for synergistic starvation-chemodynamic anticancer therapy.

J Mater Chem B. 2021-10-20

[7]
A platinum nanourchin-based multi-enzymatic platform to disrupt mitochondrial function assisted by modulating the intracellular HO homeostasis.

Biomaterials. 2022-7

[8]
PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer.

J Nanobiotechnology. 2022-6-7

[9]
Urchin-Shaped Metal Organic/Hydrogen-Bonded Framework Nanocomposite as a Multifunctional Nanoreactor for Catalysis-Enhanced Synergetic Therapy.

ACS Appl Mater Interfaces. 2021-2-3

[10]
A Cascade Nanoreactor of Metal-Protein-Polyphenol Capsule for Oxygen-Mediated Synergistic Tumor Starvation and Chemodynamic Therapy.

Small. 2023-2

引用本文的文献

[1]
Stimuli-responsive nanozymes for wound healing: From design strategies to therapeutic advances.

Mater Today Bio. 2025-7-2

[2]
Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges.

Cancer Metastasis Rev. 2025-5-10

[3]
Leveraging adenosine triphosphate for cancer theranostics.

Theranostics. 2025-3-24

[4]
Overcoming hypoxia-induced breast cancer drug resistance: a novel strategy using hollow gold-platinum bimetallic nanoshells.

J Nanobiotechnology. 2025-2-6

[5]
A Multifunctional Nanocatalytic Metal-Organic Framework as a Ferroptosis Amplifier for Mild Hyperthermia Photothermal Therapy.

Research (Wash D C). 2024-7-1

[6]
Endogenous Fe-triggered self-targeting nanomicelles for self-amplifying intracellular oxidative stress.

Animal Model Exp Med. 2025-2

[7]
mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity.

Front Microbiol. 2024-2-26

[8]
Organismal Function Enhancement through Biomaterial Intervention.

Nanomaterials (Basel). 2024-2-18

[9]
Metal nanoparticle hybrid hydrogels: the state-of-the-art of combining hard and soft materials to promote wound healing.

Theranostics. 2024

[10]
Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system.

J Nanobiotechnology. 2023-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索